Abstract:
The orbital shadowing property (OSP) of discrete dynamical systems on smooth closed manifolds is considered. The nondensity of OSP with respect to the $C^1$-topology is proved. The proof uses the method of skew products developed by Ilyashenko and Gorodetskiĭ.
Citation:
A. V. Osipov, “Nondensity of the orbital shadowing property in $C^1$-topology”, Algebra i Analiz, 22:2 (2010), 127–163; St. Petersburg Math. J., 22:2 (2011), 267–292
\Bibitem{Osi10}
\by A.~V.~Osipov
\paper Nondensity of the orbital shadowing property in $C^1$-topology
\jour Algebra i Analiz
\yr 2010
\vol 22
\issue 2
\pages 127--163
\mathnet{http://mi.mathnet.ru/aa1179}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2668126}
\zmath{https://zbmath.org/?q=an:1221.37042}
\transl
\jour St. Petersburg Math. J.
\yr 2011
\vol 22
\issue 2
\pages 267--292
\crossref{https://doi.org/10.1090/S1061-0022-2011-01140-9}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000288688900004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84871362465}
Linking options:
https://www.mathnet.ru/eng/aa1179
https://www.mathnet.ru/eng/aa/v22/i2/p127
This publication is cited in the following 6 articles:
Lee M., “Orbital Shadowing Property on Chain Transitive Sets For Generic Diffeomorphisms”, Acta Univ. Sapientiae-Math., 12:1 (2020), 146–154
Gan Sh., Li M., “Orbital shadowing for 3-flows”, J. Differ. Equ., 262:10 (2017), 5022–5051
Ilyashenko Yu., Shilin I., “Attractors and Skew Products”, Modern Theory of Dynamical Systems: a Tribute to Dmitry Victorovich Anosov, Contemporary Mathematics, 692, eds. Katok A., Pesin Y., Hertz F., Amer Mathematical Soc, 2017, 155–175
Lee M., “Orbital Shadowing Property for Generic Divergence-Free Vector Fields”, Chaos Solitons Fractals, 54 (2013), 71–75
Pilyugin S.Yu., “Theory of pseudo-orbit shadowing in dynamical systems”, Differ. Equ., 47:13 (2011), 1929–1938
V. A. Kleptsyn, P. S. Saltykov, “On $C^2$-stable effects of intermingled basins of attractors in classes of boundary-preserving maps”, Trans. Moscow Math. Soc., 72 (2011), 193–217