|
This article is cited in 5 scientific papers (total in 5 papers)
Research Papers
Uniform almost sub-Gaussian estimates for linear functionals on convex sets
S.. Buyaloa, V. Shroederb a St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
b Institut für Mathematik, Universität Zürich, Zürich, Switzerland
Abstract:
A well-known consequence of the Brunn–Minkowski inequality says that the distribution of a linear functional on a convex set has a uniformly subexponential tail. That is, for any dimension $n$, any convex set $K\subset \mathbb{R}^n$ of volume one, and any linear functional $\varphi:\mathbb{R}^n\rightarrow \mathbb{R}$, we have
$$
\operatorname{Vol}_n(\lbrace x\in K;\vert\varphi(x)\vert>t\Vert\varphi\Vert _{L_1(K)}\rbrace) \le e^{-ct}\enskip \text{for all }t>1,
$$
where $\Vert \varphi\Vert _{L_1(K)}=\int_K\vert\varphi(x)\vert d x$ and $c>0$ is a universal constant. In this paper, it is proved that for any dimension $n$ and a convex set $K\subset\mathbb{R}^n$ of volume one, there exists a nonzero linear functional $\varphi:\mathbb{R}^n\rightarrow\mathbb{R}$ such that
$\displaystyle\operatorname{Vol}_n(\lbrace x\in K;\vert\varphi(x)\vert>t\Vert\varphi\Vert _{L_1(K)}\rbrace) \le e^{-c\frac{t^2}{\log^5 (t+1)}}\enskip$ for all $\displaystyle\enskip t>1,$
where $c>0$ is a universal constant.
Keywords:
Hyperbolic dimension, Gromov's asymptotic dimension.
Received: 10.10.2006
Citation:
S.. Buyalo, V. Shroeder, “Uniform almost sub-Gaussian estimates for linear functionals on convex sets”, Algebra i Analiz, 19:1 (2007), 93–108; St. Petersburg Math. J., 19:1 (2008), 67–76
Linking options:
https://www.mathnet.ru/eng/aa104 https://www.mathnet.ru/eng/aa/v19/i1/p93
|
Statistics & downloads: |
Abstract page: | 532 | Full-text PDF : | 184 | References: | 68 | First page: | 11 |
|