Loading [MathJax]/jax/output/CommonHTML/jax.js
Algebra i Analiz
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 2007, Volume 19, Issue 1, Pages 93–108 (Mi aa104)  

This article is cited in 5 scientific papers (total in 5 papers)

Research Papers

Uniform almost sub-Gaussian estimates for linear functionals on convex sets

S.. Buyaloa, V. Shroederb

a St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
b Institut für Mathematik, Universität Zürich, Zürich, Switzerland
Full-text PDF (206 kB) Citations (5)
References:
Abstract: A well-known consequence of the Brunn–Minkowski inequality says that the distribution of a linear functional on a convex set has a uniformly subexponential tail. That is, for any dimension n, any convex set KRn of volume one, and any linear functional φ:RnR, we have
Voln({xK;|φ(x)|>tφL1(K)})ect\enskipfor all t>1,
where φL1(K)=K|φ(x)|dx and c>0 is a universal constant. In this paper, it is proved that for any dimension n and a convex set KRn of volume one, there exists a nonzero linear functional φ:RnR such that
Voln({xK;|φ(x)|>tφL1(K)})ect2log5(t+1)\enskip for all \enskipt>1,
where c>0 is a universal constant.
Keywords: Hyperbolic dimension, Gromov's asymptotic dimension.
Received: 10.10.2006
English version:
St. Petersburg Mathematical Journal, 2008, Volume 19, Issue 1, Pages 67–76
DOI: https://doi.org/10.1090/S1061-0022-07-00986-7
Bibliographic databases:
Document Type: Article
MSC: 54F45, 53C45
Language: Russian
Citation: S.. Buyalo, V. Shroeder, “Uniform almost sub-Gaussian estimates for linear functionals on convex sets”, Algebra i Analiz, 19:1 (2007), 93–108; St. Petersburg Math. J., 19:1 (2008), 67–76
Citation in format AMSBIB
\Bibitem{BuyShr07}
\by S..~Buyalo, V.~Shroeder
\paper Uniform almost sub-Gaussian estimates for linear functionals on convex sets
\jour Algebra i Analiz
\yr 2007
\vol 19
\issue 1
\pages 93--108
\mathnet{http://mi.mathnet.ru/aa104}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2319511}
\zmath{https://zbmath.org/?q=an:1145.54030}
\transl
\jour St. Petersburg Math. J.
\yr 2008
\vol 19
\issue 1
\pages 67--76
\crossref{https://doi.org/10.1090/S1061-0022-07-00986-7}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000267653000005}
Linking options:
  • https://www.mathnet.ru/eng/aa104
  • https://www.mathnet.ru/eng/aa/v19/i1/p93
  • This publication is cited in the following 5 articles:
    1. Martin W. Licht, “On Lipschitz partitions of unity and the Assouad–Nagata dimension”, Topology and its Applications, 348 (2024), 108845  crossref
    2. Matija Cencelj, Jerzy Dydak, Aleš Vavpetič, Recent Progress in General Topology III, 2014, 165  crossref
    3. Cencelj M., Dydak J., Vavpetic A., “Asymptotic Dimension, Property a, and Lipschitz Maps”, Rev. Mat. Complut., 26:2 (2013), 561–571  crossref  mathscinet  zmath  isi
    4. Mackay J.M., Sisto A., “Embedding Relatively Hyperbolic Groups in Products of Trees”, Algebr. Geom. Topol., 13:4 (2013), 2261–2282  crossref  mathscinet  zmath  isi  elib  scopus
    5. S. V. Buyalo, N. D. Lebedeva, “Dimensions of locally and asymptotically self-similar spaces”, St. Petersburg Math. J., 19:1 (2008), 45–65  mathnet  crossref  mathscinet  zmath  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и анализ St. Petersburg Mathematical Journal
    Statistics & downloads:
    Abstract page:552
    Full-text PDF :193
    References:74
    First page:11
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025