Processing math: 100%
Algebra i Analiz
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 2007, Volume 19, Issue 1, Pages 109–148 (Mi aa105)  

This article is cited in 20 scientific papers (total in 20 papers)

Research Papers

Uniform almost sub-gaussian estimates for linear functionals on convex sets

B. Klartag

School of Mathematics, Institute for Advanced Study, Princeton, NJ, USA
References:
Abstract: A well-known consequence of the Brunn–Minkowski inequality says that the distribution of a linear functional on a convex set has a uniformly subexponential tail. That is, for any dimension n, any convex set KRn of volume one, and any linear functional φ:RnR, we have
Voln({xK;|φ(x)|>tφL1(K)})ectfor allt>1,
where φL1(K)=K|φ(x)|dx and c>0 is a universal constant. In this paper, it is proved that for any dimension n and a convex set KRn of volume one, there exists a nonzero linear functional φ:RnR such that
Voln({xK;|φ(x)|>tφL1(K)})ect2log5(t+1)for allt>1,
where c>0 is a universal constant.
Received: 01.08.2006
English version:
St. Petersburg Mathematical Journal, 2008, Volume 19, Issue 1, Pages 77–106
DOI: https://doi.org/10.1090/S1061-0022-07-00987-9
Bibliographic databases:
Document Type: Article
MSC: 3A20, 52A21
Language: English
Citation: B. Klartag, “Uniform almost sub-gaussian estimates for linear functionals on convex sets”, Algebra i Analiz, 19:1 (2007), 109–148; St. Petersburg Math. J., 19:1 (2008), 77–106
Citation in format AMSBIB
\Bibitem{Kla07}
\by B.~Klartag
\paper Uniform almost sub-gaussian estimates for linear functionals on convex sets
\jour Algebra i Analiz
\yr 2007
\vol 19
\issue 1
\pages 109--148
\mathnet{http://mi.mathnet.ru/aa105}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2319512}
\zmath{https://zbmath.org/?q=an:1140.60010}
\transl
\jour St. Petersburg Math. J.
\yr 2008
\vol 19
\issue 1
\pages 77--106
\crossref{https://doi.org/10.1090/S1061-0022-07-00987-9}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000267653000006}
Linking options:
  • https://www.mathnet.ru/eng/aa105
  • https://www.mathnet.ru/eng/aa/v19/i1/p109
  • This publication is cited in the following 20 articles:
    1. B. Klartag, V. Milman, Analysis at Large, 2022, 203  crossref
    2. Gozlan N., “The Deficit in the Gaussian Log-Sobolev Inequality and Inverse Santalo Inequalities”, Int. Math. Res. Notices, 2021, rnab087  crossref  isi
    3. Mendelson Sh., “Approximating l-P Unit Balls Via Random Sampling”, Adv. Math., 386 (2021), 107829  crossref  mathscinet  isi
    4. Livshyts V G., “Some Remarks About the Maximal Perimeter of Convex Sets With Respect to Probability Measures”, Commun. Contemp. Math., 23:05 (2021), 2050037  crossref  mathscinet  isi
    5. Mendelson Sh., Milman E., Paouris G., “Generalized Dual Sudakov Minoration Via Dimension-Reduction-a Program”, Studia Math., 244:2 (2019), 159–202  crossref  mathscinet  zmath  isi
    6. Paouris G., Valettas P., “Variance Estimates and Almost Euclidean Structure”, Adv. Geom., 19:2 (2019), 165–189  crossref  mathscinet  isi  scopus
    7. Fathi M., “Stein Kernels and Moment Maps”, Ann. Probab., 47:4 (2019), 2172–2185  crossref  mathscinet  isi
    8. Kolesnikov V A., Milman E., “The Kls Isoperimetric Conjecture For Generalized Orlicz Balls”, Ann. Probab., 46:6 (2018), 3578–3615  crossref  mathscinet  zmath  isi  scopus
    9. J. Math. Sci. (N. Y.), 238:4 (2019), 366–376  mathnet  crossref
    10. Brazitikos S., Hioni L., “Sub-Gaussian Directions of Isotropic Convex Bodies”, J. Math. Anal. Appl., 425:2 (2015), 919–927  crossref  mathscinet  zmath  isi
    11. Cordero-Erausquin D., Klartag B., “Moment Measures”, J. Funct. Anal., 268:12 (2015), 3834–3866  crossref  mathscinet  zmath  isi
    12. Alonso-Gutierrez D., Prochno J., “on the Gaussian Behavior of Marginals and the Mean Width of Random Polytopes”, Proc. Amer. Math. Soc., 143:2 (2015), PII S0002-9939(2014)12401-4, 821–832  crossref  mathscinet  zmath  isi
    13. Alonso-Gutierrez D., Bastero J., “Relating the Conjectures”: AlonsoGutierrez, D Bastero, J, Approaching the Kannan-Lovasz-Simonovits and Variance Conjectures, Lect. Notes Math., 2131, Springer-Verlag Berlin, 2015, 103–135  crossref  mathscinet  isi
    14. Milman E., “on the Mean-Width of Isotropic Convex Bodies and Their Associated l-P-Centroid Bodies”, Int. Math. Res. Notices, 2015, no. 11, 3408–3423  crossref  mathscinet  zmath  isi
    15. Vritsiou B.-H., “Further Unifying Two Approaches To the Hyperplane Conjecture”, Int. Math. Res. Notices, 2014, no. 6, 1493–1514  crossref  mathscinet  zmath  isi
    16. Bo'az Klartag, Lecture Notes in Mathematics, 2116, Geometric Aspects of Functional Analysis, 2014, 231  crossref
    17. Klartag B., Milman E., “Centroid bodies and the logarithmic Laplace transform—a unified approach”, J. Funct. Anal., 262:1 (2012), 10–34  crossref  mathscinet  zmath  isi
    18. Paouris G., “On the existence of supergaussian directions on convex bodies”, Mathematika, 58:2 (2012), 389–408  crossref  mathscinet  zmath  isi
    19. Pivovarov P., “On the volume of caps and bounding the mean-width of an isotropic convex body”, Math. Proc. Cambridge Philos. Soc., 149:2 (2010), 317–331  crossref  mathscinet  zmath  adsnasa  isi
    20. Barthe F., “Un théorème de la limite centrale pour les ensembles convexes (d'après Klartag et Fleury-Guédon-Paouris)”, Séminaire Bourbaki. Volume 2008/2009. Exposés 997–1011, Exp. No. 1007, Astérisque, 332, 2010, 287–304  mathscinet  zmath  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и анализ St. Petersburg Mathematical Journal
    Statistics & downloads:
    Abstract page:333
    Full-text PDF :141
    References:64
    First page:5
     
      Contact us:
    math-net2025_05@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025