Abstract:
A well-known consequence of the Brunn–Minkowski inequality says that the distribution of a linear functional on a convex set has a uniformly subexponential tail. That is, for any dimension n, any convex set K⊂Rn of volume one, and any linear functional φ:Rn→R, we have
Voln({x∈K;|φ(x)|>t‖φ‖L1(K)})⩽e−ctfor allt>1,
where ‖φ‖L1(K)=∫K|φ(x)|dx and c>0 is a universal constant. In this paper, it is proved that for any dimension n and a convex set K⊂Rn of volume one, there exists a nonzero linear functional φ:Rn→R such that
Voln({x∈K;|φ(x)|>t‖φ‖L1(K)})⩽e−ct2log5(t+1)for allt>1,
where c>0 is a universal constant.
Citation:
B. Klartag, “Uniform almost sub-gaussian estimates for linear functionals on convex sets”, Algebra i Analiz, 19:1 (2007), 109–148; St. Petersburg Math. J., 19:1 (2008), 77–106
\Bibitem{Kla07}
\by B.~Klartag
\paper Uniform almost sub-gaussian estimates for linear functionals on convex sets
\jour Algebra i Analiz
\yr 2007
\vol 19
\issue 1
\pages 109--148
\mathnet{http://mi.mathnet.ru/aa105}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2319512}
\zmath{https://zbmath.org/?q=an:1140.60010}
\transl
\jour St. Petersburg Math. J.
\yr 2008
\vol 19
\issue 1
\pages 77--106
\crossref{https://doi.org/10.1090/S1061-0022-07-00987-9}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000267653000006}
Linking options:
https://www.mathnet.ru/eng/aa105
https://www.mathnet.ru/eng/aa/v19/i1/p109
This publication is cited in the following 20 articles:
B. Klartag, V. Milman, Analysis at Large, 2022, 203
Gozlan N., “The Deficit in the Gaussian Log-Sobolev Inequality and Inverse Santalo Inequalities”, Int. Math. Res. Notices, 2021, rnab087
Mendelson Sh., “Approximating l-P Unit Balls Via Random Sampling”, Adv. Math., 386 (2021), 107829
Livshyts V G., “Some Remarks About the Maximal Perimeter of Convex Sets With Respect to Probability Measures”, Commun. Contemp. Math., 23:05 (2021), 2050037
Mendelson Sh., Milman E., Paouris G., “Generalized Dual Sudakov Minoration Via Dimension-Reduction-a Program”, Studia Math., 244:2 (2019), 159–202
Paouris G., Valettas P., “Variance Estimates and Almost Euclidean Structure”, Adv. Geom., 19:2 (2019), 165–189
Fathi M., “Stein Kernels and Moment Maps”, Ann. Probab., 47:4 (2019), 2172–2185
Kolesnikov V A., Milman E., “The Kls Isoperimetric Conjecture For Generalized Orlicz Balls”, Ann. Probab., 46:6 (2018), 3578–3615
J. Math. Sci. (N. Y.), 238:4 (2019), 366–376
Brazitikos S., Hioni L., “Sub-Gaussian Directions of Isotropic Convex Bodies”, J. Math. Anal. Appl., 425:2 (2015), 919–927
Cordero-Erausquin D., Klartag B., “Moment Measures”, J. Funct. Anal., 268:12 (2015), 3834–3866
Alonso-Gutierrez D., Prochno J., “on the Gaussian Behavior of Marginals and the Mean Width of Random Polytopes”, Proc. Amer. Math. Soc., 143:2 (2015), PII S0002-9939(2014)12401-4, 821–832
Alonso-Gutierrez D., Bastero J., “Relating the Conjectures”: AlonsoGutierrez, D Bastero, J, Approaching the Kannan-Lovasz-Simonovits and Variance Conjectures, Lect. Notes Math., 2131, Springer-Verlag Berlin, 2015, 103–135
Milman E., “on the Mean-Width of Isotropic Convex Bodies and Their Associated l-P-Centroid Bodies”, Int. Math. Res. Notices, 2015, no. 11, 3408–3423
Vritsiou B.-H., “Further Unifying Two Approaches To the Hyperplane Conjecture”, Int. Math. Res. Notices, 2014, no. 6, 1493–1514
Bo'az Klartag, Lecture Notes in Mathematics, 2116, Geometric Aspects of Functional Analysis, 2014, 231
Klartag B., Milman E., “Centroid bodies and the logarithmic Laplace transform—a unified approach”, J. Funct. Anal., 262:1 (2012), 10–34
Paouris G., “On the existence of supergaussian directions on convex bodies”, Mathematika, 58:2 (2012), 389–408
Pivovarov P., “On the volume of caps and bounding the mean-width of an isotropic convex body”, Math. Proc. Cambridge Philos. Soc., 149:2 (2010), 317–331
Barthe F., “Un théorème de la limite centrale pour les ensembles convexes (d'après Klartag et Fleury-Guédon-Paouris)”, Séminaire Bourbaki. Volume 2008/2009. Exposés 997–1011, Exp. No. 1007, Astérisque, 332, 2010, 287–304