|
This article is cited in 20 scientific papers (total in 20 papers)
Research Papers
Uniform almost sub-gaussian estimates for linear functionals on convex sets
B. Klartag School of Mathematics, Institute for Advanced Study, Princeton, NJ, USA
Abstract:
A well-known consequence of the Brunn–Minkowski inequality says that the distribution of a linear functional on a convex set has a uniformly subexponential tail. That is, for any dimension $n$, any convex set $K\subset\mathbb{R}^n$ of volume one, and any linear functional $\varphi\colon\mathbb{R}^n\to\mathbb{R}$, we have
$$
\operatorname{Vol}_n(\{x\in K;|\varphi(x)|>t\|\varphi\|_{L_1(K)}\})\le e^{-ct}\quad \text{for all}\quad t>1,
$$
where $\|\varphi\|_{L_1(K)}=\int_K|\varphi(x)|\,dx$ and $c>0$ is a universal constant. In this paper, it is proved that for any dimension $n$ and a convex set $K\subset\mathbb{R}^n$ of volume one, there exists a nonzero linear functional $\varphi\colon\mathbb{R}^n\to\mathbb{R}$ such that
$$
\operatorname{Vol}_n(\{x\in K;|\varphi(x)|>t\|\varphi\|_{L_1(K)}\})\le e^{-c\frac{t^2}{\log^5 (t+1)}} \quad \text{for all}\quad t>1,
$$
where $c>0$ is a universal constant.
Received: 01.08.2006
Citation:
B. Klartag, “Uniform almost sub-gaussian estimates for linear functionals on convex sets”, Algebra i Analiz, 19:1 (2007), 109–148; St. Petersburg Math. J., 19:1 (2008), 77–106
Linking options:
https://www.mathnet.ru/eng/aa105 https://www.mathnet.ru/eng/aa/v19/i1/p109
|
|