Abstract:
Two results are obtained, in a sense dual to each other. First, the capacity dimension of every compact, locally self-similar metric space coincides with the topological dimension, and second, a metric space asymptotically similar to its compact subspace has asymptotic dimension equal to the topological dimension of the subspace. As an application of the first result, the following Gromov conjecture is proved: the asymptotic dimension of every hyperbolic group G equals the topological dimension of its boundary at infinity plus 1, asdimG=dim∂∞G+1. As an application of the second result, we construct Pontryagin surfaces for the asymptotic dimension; in particular, these surfaces are examples of metric spaces X, Y with asdim(X×Y)<asdimX+asdimY. Other applications are also given.
Citation:
S. V. Buyalo, N. D. Lebedeva, “Dimensions of locally and asymptotically self-similar spaces”, Algebra i Analiz, 19:1 (2007), 60–92; St. Petersburg Math. J., 19:1 (2008), 45–65
\Bibitem{BuyLeb07}
\by S.~V.~Buyalo, N.~D.~Lebedeva
\paper Dimensions of locally and asymptotically self-similar spaces
\jour Algebra i Analiz
\yr 2007
\vol 19
\issue 1
\pages 60--92
\mathnet{http://mi.mathnet.ru/aa103}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2319510}
\zmath{https://zbmath.org/?q=an:1145.54029}
\transl
\jour St. Petersburg Math. J.
\yr 2008
\vol 19
\issue 1
\pages 45--65
\crossref{https://doi.org/10.1090/S1061-0022-07-00985-5}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000267653000004}
Linking options:
https://www.mathnet.ru/eng/aa103
https://www.mathnet.ru/eng/aa/v19/i1/p60
This publication is cited in the following 21 articles:
Taras Banakh, Viktoria Brydun, Lesia Karchevska, Mykhailo Zarichnyi, “The ℓ
p -metrization of functors with finite supports”, Quaestiones Mathematicae, 46:sup1 (2023), 53
Panos Papasoglu, “Polynomial growth and asymptotic dimension”, Isr. J. Math., 255:2 (2023), 985
Carrasco M., Mackay J.M., “Conformal Dimension of Hyperbolic Groups That Split Over Elementary Subgroups”, Invent. Math., 227:2 (2022), 795–854
Colvin S., “Minimising Hausdorff Dimension Under Holder Equivalence”, J. Lond. Math. Soc.-Second Ser., 103:3 (2021), 781–816
Hume D., Mackay J.M., Tessera R., “Poincare Profiles of Groups and Spaces”, Rev. Mat. Iberoam., 36:6 (2020), 1835–1886
Mackay J.M. Sisto A., “Quasi-Hyperbolic Planes in Relatively Hyperbolic Groups”, Ann. Acad. Sci. Fenn. Ser. A1-Math., 45 (2020), 139–174
Bestvina M., Bromberg K., “On the Asymptotic Dimension of the Curve Complex”, Geom. Topol., 23:5 (2019), 2227–2276
Cordes M. Hume D., “Stability and the Morse Boundary”, J. Lond. Math. Soc.-Second Ser., 95:3 (2017), 963–988
Guilbault C.R., Moran M.A., “a Comparison of Large Scale Dimension of a Metric Space To the Dimension of Its Boundary”, Topology Appl., 199 (2016), 17–22
Dydak J., Virk Z., “Inducing Maps Between Gromov Boundaries”, Mediterr. J. Math., 13:5 (2016), 2733–2752
Moran M.A., “Metrics on visual boundaries of CAT(0) spaces”, Geod. Dedic., 183:1 (2016), 123–142
Webb R.C.H., “Combinatorics of Tight Geodesics and Stable Lengths”, Trans. Am. Math. Soc., 367:10 (2015), 7323–7342
Osajda D., Swiatkowski J., “on Asymptotically Hereditarily Aspherical Groups”, Proc. London Math. Soc., 111:1 (2015), 93–126
Sawicki D., “Remarks on Coarse Triviality of Asymptotic Assouad-Nagata Dimension”, Topology Appl., 167 (2014), 69–75
Higes J., Peng I., “Assouad–Nagata dimension of connected Lie groups”, Math. Z., 273:1-2 (2013), 283–302
Mackay J.M. Sisto A., “Embedding Relatively Hyperbolic Groups in Products of Trees”, Algebr. Geom. Topol., 13:4 (2013), 2261–2282