Образец цитирования:
В. М. Золотарев, “Уточнение ряда теорем теории ветвящихся случайных процессов”, Теория вероятн. и ее примен., 2:2 (1957), 256–266; Theory Probab. Appl., 2:2 (1957), 245–253
\RBibitem{Zol57}
\by В.~М.~Золотарев
\paper Уточнение ряда теорем теории ветвящихся случайных процессов
\jour Теория вероятн. и ее примен.
\yr 1957
\vol 2
\issue 2
\pages 256--266
\mathnet{http://mi.mathnet.ru/tvp5022}
\transl
\jour Theory Probab. Appl.
\yr 1957
\vol 2
\issue 2
\pages 245--253
\crossref{https://doi.org/10.1137/1102016}
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/tvp5022
https://www.mathnet.ru/rus/tvp/v2/i2/p256
Эта публикация цитируется в следующих 54 статьяx:
Azam A. Imomov, “On the Kolmogorov Constant Explicit Form in the Theory of Stochastic Continuous-time Markov Branching Systems”, J Theor Probab, 38:2 (2025)
Azam A. Imomov, Misliddin S. Murtazaev, “On the Kolmogorov constant explicit form in the theory of discrete-time stochastic branching systems”, J. Appl. Probab., 2024, 1
Azam A. Imomov, Misliddin Murtazaev, “Renewed Limit Theorems for Noncritical Galton–Watson Branching Systems”, J Theor Probab, 2024
Ю. Л. Павлов, “О предельном распределении числа вершин в слоях дерева процесса Гальтона–Ватсона”, Матем. заметки, 116:3 (2024), 430–437; Yu. L. Pavlov, “On the limit distribution of the number of vertices in the levels of a Galton–Watson tree”, Math. Notes, 116:3 (2024), 514–520
Azam A. Imomov, Erkin E. Tukhtaev, János Sztrik, “On Properties of Karamata Slowly Varying Functions with Remainder and Their Applications”, Mathematics, 12:20 (2024), 3266
Azam A. Imomov, Misliddin Murtazaev, Communications in Computer and Information Science, 1803, Information Technologies and Mathematical Modelling. Queueing Theory and Applications, 2023, 68
Azam Abdurakhimovich Imomov, Erkin Egamberdievich Tukhtaev, “On asymptotic structure of critical Galton-Watson branching processes allowing immigration with infinite variance”, Stochastic Models, 39:1 (2023), 118
Kh. Kudratov, Ya. Khusanbaev, “Some limit theorems for the critical Galton–Watson branching processes”, Ukr. Mat. Zhurn., 75:4 (2023), 467
Yevgeniy Kovchegov, Guochen Xu, Ilya Zaliapin, “Invariant Galton–Watson trees: metric properties and attraction with respect to generalized dynamical pruning”, Adv. Appl. Probab., 55:2 (2023), 643
Kh. Kudratov, Ya. Khusanbaev, “Some Limit Theorems for the Critical Galton–Watson Branching Processes”, Ukr Math J, 75:4 (2023), 535
A. Imomov, A. Meyliyev, “On the Application of Slowly Varying Functions with Remainder in the Theory of Markov Branching Processes with Mean One and Infinite Variance”, Ukr Math J, 73:8 (2022), 1225
A. L. Yakymiv, “Random Mappings with Constraints on the Cycle Lengths”, J. Math. Sci. (N.Y.), 267:2 (2022), 228–233
В. А. Ватутин, Е. Е. Дьяконова, В. А. Топчий, “Критические процессы Гальтона–Ватсона со счетным множеством типов частиц и бесконечными вторыми моментами”, Матем. сб., 212:1 (2021), 3–27; V. A. Vatutin, E. E. Dyakonova, V. A. Topchii, “Critical Galton-Watson branching processes with a countable set of types and infinite second moments”, Sb. Math., 212:1 (2021), 1–24
A. A. Imomov, A. Kh. Meyliev, “On asymptotic structure of continuous-time Markov branching processes allowing immigration without higher-order moments”, Уфимск. матем. журн., 13:1 (2021), 137–147; Ufa Math. J., 13:1 (2021), 137–147
Birzu G., Hallatschek O., Korolev K.S., “Genealogical Structure Changes as Range Expansions Transition From Pushed to Pulled”, Proc. Natl. Acad. Sci. U. S. A., 118:34 (2021), e2026746118
Imomov A.A., Meyliev A.Kh., “On the Asymptotic Structure of Non-Critical Markov Stochastic Branching Processes With Continuous Time”, Vestn. Tomsk. Gos. Univ.-Mat. Mek., 2021, no. 69, 22–36
A. Imomov, A. Meyliyev, “On application of slowly varying functions with remainder in the theory of Markov branching processes with mean one and infinite variance”, Ukr. Mat. Zhurn., 73:8 (2021), 1056
Serik Sagitov, “Tail generating functions for extendable branching processes”, Stochastic Processes and their Applications, 127:5 (2017), 1649
Serik Sagitov, Alexey Lindo, Lecture Notes in Statistics, 219, Branching Processes and Their Applications, 2016, 237
Amine Asselah, Pablo A. Ferrari, Pablo Groisman, Matthieu Jonckheere, “Fleming–Viot selects the minimal quasi-stationary distribution: The Galton–Watson case”, Ann. Inst. H. Poincaré Probab. Statist., 52:2 (2016)