1. V. Le, “Coalescence Times for the Bienaymé-Galton-Watson Process”, Journal of Applied Probability, 51:1 (2014), 209  crossref
  2. V. Le, “Coalescence Times for the Bienaymé-Galton-Watson Process”, J. Appl. Probab., 51:01 (2014), 209  crossref
  3. Lancelot F. James, “Lamperti-type laws”, Ann. Appl. Probab., 20:4 (2010)  crossref
  4. Anthony G. Pakes, “Critical markov branching process limit theorems allowing infinite variance”, Advances in Applied Probability, 42:2 (2010), 460  crossref
  5. Andreas N. Lagerås, Serik Sagitov, “Reduced Branching Processes with Very Heavy Tails”, Journal of Applied Probability, 45:1 (2008), 190  crossref
  6. Daniel Tokarev, “Growth of Integral Transforms and Extinction in Critical Galton-Watson Processes”, Journal of Applied Probability, 45:2 (2008), 472  crossref
  7. Andreas N. Lagerås, Serik Sagitov, “Reduced Branching Processes with Very Heavy Tails”, J. Appl. Probab., 45:01 (2008), 190  crossref
  8. Anthony G. Pakes, “Extinction and explosion of nonlinear Markov branching processes”, J. Aust. Math. Soc., 82:3 (2007), 403  crossref
  9. Б. А. Севастьянов, “Асимптотика вероятности продолжения ограниченного снизу марковского критического ветвящегося процесса с непрерывным временем и бесконечной дисперсией”, Дискрет. матем., 18:1 (2006), 3–8  mathnet  crossref  mathscinet  zmath  elib; B. A. Sevast'yanov, “Asymptotics of the survival probability of a bounded from below Markov critical branching process with continuous time and infinite variance”, Discrete Math. Appl., 16:1 (2006), 1–5  crossref
  10. Andreas Nordvall Lagerås, Anders Martin-Löf, “Genealogy for supercritical branching processes”, Journal of Applied Probability, 43:4 (2006), 1066  crossref
  11. Andreas Nordvall Lagerås, Anders Martin-Löf, “Genealogy for supercritical branching processes”, J. Appl. Probab., 43:04 (2006), 1066  crossref
  12. С. В. Нагаев, В. И. Вахтель, “О локальной предельной теореме для критического процесса Гальтона–Ватсона”, Теория вероятн. и ее примен., 50:3 (2005), 457–479  mathnet  crossref  mathscinet  zmath  elib; S. V. Nagaev, V. I. Vakhtel', “On the local limit theorem for critical Galton–Watson process”, Theory Probab. Appl., 50:3 (2006), 400–419  crossref  isi
  13. Donald A Dawson, Kenneth J Hochberg, Vladimir Vinogradov, “High-density limits of hierarchically structured branching-diffusing populations”, Stochastic Processes and their Applications, 62:2 (1996), 191  crossref
  14. J.P. Dion, N.M. Yanev, “Statistical inference for branching processes with an increasing random number of ancestors”, Journal of Statistical Planning and Inference, 39:2 (1994), 329  crossref
  15. Donald A. Dawson, Vladimir Vinogradov, “Almost-sure path properties of (2, d, β)-superprocesses”, Stochastic Processes and their Applications, 51:2 (1994), 221  crossref
  16. Donald Dawson, Lecture Notes in Mathematics, 1541, Ecole d'Eté de Probabilités de Saint-Flour XXI - 1991, 1993, 1  crossref
  17. Anthony G. Pakes, “An infinite alleles version of the Markov branching process”, J Aust Math Soc A, 46:1 (1989), 146  crossref
  18. Anthony G. Pakes, “Asymptotic results for the extinction time of Markov branching processes allowing emigration, I. Random walk decrements”, Advances in Applied Probability, 21:2 (1989), 243  crossref
  19. Б. А. Севастьянов, “Исследования по ветвящимся процессам на кафедре теории вероятностей МГУ”, Теория вероятн. и ее примен., 34:1 (1989), 231–236  mathnet  isi; B. A. Sevast'yanov, “Studies on Branching Processes at the Department of Probability Theory at the MSU”, Theory Probab. Appl., 34:1 (1989), 200–204  mathnet  crossref
  20. Anthony G. Pakes, “Asymptotic results for the extinction time of Markov branching processes allowing emigration, I. Random walk decrements”, Adv. Appl. Probab., 21:02 (1989), 243  crossref
Предыдущая
1
2
3
Следующая