Аннотация:
Доказано, что приведенная надстройка $X = \Sigma Y$ над любым конечным или счетным связным полиэдром $Y$ допускает двузначное умножение $\mu \colon X\times X \to \mathrm {Sym}^2 X$, удовлетворяющее аксиоме единицы: $\mu (e,x) = \mu (x,e) = [x,x]$ для всех $x\in X$. Когда $X$ есть сфера $S^m$, $m = 1,3,7$, это классический результат; в случае $X=S^2$ это теорема В.М. Бухштабера 1990 г., в случае $X=S^{2k+1}$, $k\ne 0,1,3$, — теорема автора 2019 г. Аналогичное утверждение доказано также для всех $X$, являющихся сглаживаемыми гомологическими сферами произвольной размерности, и для $X=\mathbb R\mathrm P^m$, $m\ge 2$. Доказательство одного из основных результатов использует следующее утверждение, представляющее и самостоятельный интерес. Пусть даны связные конечные CW-комплексы $X$, $Y$ и непрерывное отображение $f\colon X\to Y$, индуцирующее изоморфизм целочисленных гомологий. Тогда для любого $n\ge 2$ отображение $\mathrm {Sym}^n f\colon \mathrm {Sym}^n X \to \mathrm {Sym}^n\kern 1pt Y$ также индуцирует изоморфизм целочисленных гомологий.
Ключевые слова:симметрические степени, $nH$-пространства, гомологические сферы.
Образец цитирования:
Д. В. Гугнин, “Любая надстройка и любая гомологическая сфера являются $2H$-пространствами”, Торическая топология, действия групп, геометрия и комбинаторика. Часть 2, Сборник статей, Труды МИАН, 318, МИАН, М., 2022, 51–65; Proc. Steklov Inst. Math., 318 (2022), 45–58