Труды Института математики и механики УрО РАН
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив
Импакт-фактор

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Тр. ИММ УрО РАН:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Труды Института математики и механики УрО РАН, 2012, том 18, номер 1, страницы 178–197 (Mi timm788)  

Эта публикация цитируется в 4 научных статьях (всего в 4 статьях)

Восстановление граничных управлений в параболических системах

А. И. Короткийab, Д. О. Михайловаb

a Институт математики и механики УрО РАН
b Уральский федеральный университет
Список литературы:
Аннотация: Рассматривается обратная задача динамики, состоящая в восстановлении априори неизвестных граничных управлений в динамических системах, описываемых краевыми задачами для уравнений с частными производными параболического типа. Исходной информацией для решения обратной задачи служат результаты приближенных измерений состояний наблюдаемого движения системы. Задача решается в статическом варианте, когда для решения задачи используется вся совокупность результатов измерений, накопленная в течение какого-либо заданного промежутка времени наблюдения. Рассматриваемая задача некорректна и для ее решения предлагается воспользоваться методом Тихонова со стабилизатором, содержащим сумму среднеквадратичной нормы и полной вариации по времени допустимого управления. Использование такого стабилизатора позволяет получить более тонкие результаты, чем приближение искомого управления в пространствах Лебега. В частности, на этом пути удается обосновать поточечную и кусочно-равномерную сходимости регуляризованных приближений, что открывает возможность для численной реконструкции тонкой структуры искомого управления. В работе описан и обоснован метод проекции субградиента получения минимизирующей последовательности для функционала Тихонова, описана двухэтапная конечномерная аппроксимация задачи. Приводятся результаты численного моделирования.
Ключевые слова: динамическая система, управление, реконструкция, наблюдение, измерение, обратная задача, регуляризация, метод Тихонова, вариация, кусочно-равномерная сходимость.
Поступила в редакцию: 27.04.2011
Англоязычная версия:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2013, Volume 280, Issue 1, Pages 98–118
DOI: https://doi.org/10.1134/S0081543813020090
Реферативные базы данных:
Тип публикации: Статья
УДК: 517.9
Образец цитирования: А. И. Короткий, Д. О. Михайлова, “Восстановление граничных управлений в параболических системах”, Тр. ИММ УрО РАН, 18, № 1, 2012, 178–197; Proc. Steklov Inst. Math. (Suppl.), 280, suppl. 1 (2013), 98–118
Цитирование в формате AMSBIB
\RBibitem{KorMik12}
\by А.~И.~Короткий, Д.~О.~Михайлова
\paper Восстановление граничных управлений в~параболических системах
\serial Тр. ИММ УрО РАН
\yr 2012
\vol 18
\issue 1
\pages 178--197
\mathnet{http://mi.mathnet.ru/timm788}
\elib{https://elibrary.ru/item.asp?id=17358687}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2013
\vol 280
\issue , suppl. 1
\pages 98--118
\crossref{https://doi.org/10.1134/S0081543813020090}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000317236500009}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84876007094}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/timm788
  • https://www.mathnet.ru/rus/timm/v18/i1/p178
  • Эта публикация цитируется в следующих 4 статьяx:
    1. A. N. Diligenskaya, S. A. Kolpashchikov, A. G. Mandra, Lecture Notes in Electrical Engineering, 641, Advances in Automation, 2020, 1  crossref
    2. A E Rassadin, T S Sazanova, A V Stepanov, L A Fomin, “Some notes about scanning probe microscopy, nanoengineering and methods of quantum mechanics”, IOP Conf. Ser.: Mater. Sci. Eng., 443 (2018), 012027  crossref
    3. А. И. Короткий, Н. А. Артемова, Н. А. Ваганова, О. О. Коврижных, Л. И. Рубина, О. Н. Ульянов, О. В. Ушакова, М. Ю. Филимонов, И. А. Цепелев, “О разработках аналитических и численных методов решения задач механики сплошной среды”, Тр. ИММ УрО РАН, 19, № 2, 2013, 203–215  mathnet  mathscinet  elib
    4. А. И. Короткий, Е. И. Грибанова, “Восстановление граничных управлений в гиперболических системах”, Тр. ИММ УрО РАН, 18, № 2, 2012, 154–169  mathnet  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Института математики и механики УрО РАН
    Статистика просмотров:
    Страница аннотации:512
    PDF полного текста:144
    Список литературы:93
    Первая страница:4
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2025