Труды по дискретной математике
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Тр. по дискр. матем.:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Труды по дискретной математике, 2007, том 10, страницы 73–86 (Mi tdm161)  

Эта публикация цитируется в 7 научных статьях (всего в 7 статьях)

Случайные комбинаторные объекты в общей параметрической модели

Г. И. Ивченко, Ю. И. Медведев
Аннотация: Предлагается новый подход к проблемам рандомизации и классификации в вероятностной комбинаторике, связанный с введением на произвольном множестве разложимых комбинаторных объектов некоторой общей параметрической меры, обладающей достаточным числом степеней свободы, чтобы удовлетворить потребности криптографической практики в рассмотрении неравновероятных комбинаторных объектов самой различной природы.
Образец цитирования: Г. И. Ивченко, Ю. И. Медведев, “Случайные комбинаторные объекты в общей параметрической модели”, Тр. по дискр. матем., 10, Физматлит, М., 2007, 73–86
Цитирование в формате AMSBIB
\RBibitem{IvcMed07}
\by Г.~И.~Ивченко, Ю.~И.~Медведев
\paper Случайные комбинаторные объекты в~общей параметрической модели
\serial Тр. по дискр. матем.
\yr 2007
\vol 10
\pages 73--86
\publ Физматлит
\publaddr М.
\mathnet{http://mi.mathnet.ru/tdm161}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/tdm161
  • https://www.mathnet.ru/rus/tdm/v10/p73
  • Эта публикация цитируется в следующих 7 статьяx:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Статистика просмотров:
    Страница аннотации:438
    PDF полного текста:119
    Первая страница:18
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024