Аннотация:
Рассмотрены разные опорные условия для замкнутого множества из вещественного гильбертова пространства $\mathcal H$ в точке границы множества. Указанные условия обеспечивают некоторое локальное условие Липшица метрического проектора точки на множество по точке. Также имеет место локальная липшицевость проектора в метрике Хаусдорфа как функции множества. Полученное условие Липшица применено для доказательства линейной сходимости ряда градиентных методов (метода проекции градиента, метода условного градиента) без предположения сильной выпуклости или даже выпуклости функции и без выпуклости множества. Функция при этом предполагается дифференцируемой с непрерывным по Липшицу градиентом.
Библиография: 29 названий.
Ключевые слова:опорные условия сильной и слабой выпуклости, метод проекции градиента, метод условного градиента, негладкий анализ.
Образец цитирования:
М. В. Балашов, “Условие Липшица метрической проекции и сходимость градиентных методов”, Матем. сб., 215:4 (2024), 62–80; M. V. Balashov, “Lipschitz continuity of the metric projection operator and convergence of gradient methods”, Sb. Math., 215:4 (2024), 494–510