|
Эта публикация цитируется в 20 научных статьях (всего в 20 статьях)
A Solvable Deformation of Quantum Mechanics
Alba Grassia, Marcos Mariñob a Simons Center for Geometry and Physics, SUNY, Stony Brook, NY, 1194-3636, USA
b Département de Physique Théorique et Section de Mathématiques, Université de Genève, Genève, CH-1211 Switzerland
Аннотация:
The conventional Hamiltonian $H= p^2+ V_N(x)$, where the potential $V_N(x)$ is a polynomial of degree $N$, has been studied intensively since the birth of quantum mechanics. In some cases, its spectrum can be determined by combining the WKB method with resummation techniques. In this paper we point out that the deformed Hamiltonian $H=2 \cosh(p)+ V_N(x)$ is exactly solvable for any potential: a conjectural exact quantization condition, involving well-defined functions, can be written down in closed form, and determines the spectrum of bound states and resonances. In particular, no resummation techniques are needed. This Hamiltonian is obtained by quantizing the Seiberg–Witten curve of $\mathcal{N}=2$ Yang–Mills theory, and the exact quantization condition follows from the correspondence between spectral theory and topological strings, after taking a suitable four-dimensional limit. In this formulation, conventional quantum mechanics emerges in a scaling limit near the Argyres–Douglas superconformal point in moduli space. Although our deformed version of quantum mechanics is in many respects similar to the conventional version, it also displays new phenomena, like spontaneous parity symmetry breaking.
Ключевые слова:
topological string theory; supersymmetric gauge theory; quantum mechanics; spectral theory.
Поступила: 15 октября 2018 г.; в окончательном варианте 23 марта 2019 г.; опубликована 31 марта 2019 г.
Образец цитирования:
Alba Grassi, Marcos Mariño, “A Solvable Deformation of Quantum Mechanics”, SIGMA, 15 (2019), 025, 42 pp.
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/sigma1461 https://www.mathnet.ru/rus/sigma/v15/p25
|
Статистика просмотров: |
Страница аннотации: | 215 | PDF полного текста: | 45 | Список литературы: | 41 |
|