Аннотация:
The conventional Hamiltonian H=p2+VN(x)H=p2+VN(x), where the potential VN(x)VN(x) is a polynomial of degree NN, has been studied intensively since the birth of quantum mechanics. In some cases, its spectrum can be determined by combining the WKB method with resummation techniques. In this paper we point out that the deformed Hamiltonian H=2cosh(p)+VN(x)H=2cosh(p)+VN(x) is exactly solvable for any potential: a conjectural exact quantization condition, involving well-defined functions, can be written down in closed form, and determines the spectrum of bound states and resonances. In particular, no resummation techniques are needed. This Hamiltonian is obtained by quantizing the Seiberg–Witten curve of N=2N=2 Yang–Mills theory, and the exact quantization condition follows from the correspondence between spectral theory and topological strings, after taking a suitable four-dimensional limit. In this formulation, conventional quantum mechanics emerges in a scaling limit near the Argyres–Douglas superconformal point in moduli space. Although our deformed version of quantum mechanics is in many respects similar to the conventional version, it also displays new phenomena, like spontaneous parity symmetry breaking.
The work of M.M. is supported in part by the Fonds National Suisse, subsidies 200021-156995 and 200020-141329, and by the NCCR 51NF40-141869 “The Mathematics of Physics” (SwissMAP).
Поступила:15 октября 2018 г.; в окончательном варианте 23 марта 2019 г.; опубликована 31 марта 2019 г.
Yaozhong Qiu, “Weyl asymptotics for functional difference operators with power to quadratic exponential potential”, Proc. Amer. Math. Soc., 152:8 (2024), 3339
Matijn François, Alba Grassi, “Painlevé Kernels and Surface Defects at Strong Coupling”, Ann. Henri Poincaré, 2024
Christian Ferko, Alisha Gupta, Eashan Iyer, “Quantization of the ModMax oscillator”, Phys. Rev. D, 108:12 (2023)
Christian Ferko, Alisha Gupta, “ModMax oscillators and root-
TT¯
-like flows in supersymmetric quantum mechanics”, Phys. Rev. D, 108:4 (2023)
Jie Gu, Marcos Mariño, “On the resurgent structure of quantum periods”, SciPost Phys., 15:1 (2023)
Bianchi M., Consoli D., Grillo A., Morales F., “Qnms of Branes, Bhs and Fuzzballs From Quantum Sw Geometries”, Phys. Lett. B, 824 (2022), 136837
Aminov G., Grassi A., Hatsuda Ya., “Black Hole Quasinormal Modes and Seiberg-Witten Theory”, Ann. Henri Poincare, 23:6 (2022), 1951–1977
Grassi A., Hao Q., Neitzke A., “Exact WKB Methods in $\mathrm{SU(2)}$$N_f=1$”, J. High Energy Phys., 2022, no. 1, 046
Bianchi M., Consoli D., Grillo A., Morales J.F., “More on the Sw-Qnm Correspondence”, J. High Energy Phys., 2022, no. 1, 024
A. E. Bernardini, O. Bertolami, “Generalized phase-space description of nonlinear Hamiltonian systems and Harper-like dynamics”, Phys. Rev. A, 105:3 (2022)
K. Ito, T. Kondo, K. Kuroda, H. Shu, “ODE/IM correspondence for affine Lie algebras: a numerical approach”, J. Phys. A-Math. Theor., 54:4 (2021), 044001
B.-n. Du, M.-x. Huang, “Quantum periods and TBA-like equations for a class of Calabi-Yau geometries”, J. High Energy Phys., 2021, no. 1, 2
K. Imaizumi, “Quantum periods and TBA equations for $\mathcal{N}=2$$\mathrm{SU}(2)$$N_f=2$ SQCD with flavor symmetry”, Phys. Lett. B, 816 (2021), 136270
D. J. Gross, J. Kruthoff, A. Rolph, E. Shaghoulian, “Hamiltonian deformations in quantum mechanics, t(t)over-bar, and the syk model”, Phys. Rev. D, 102:4 (2020), 046019
K. Ito, H. Shu, “TBA equations for the Schrodinger equation with a regular singularity”, J. Phys. A-Math. Theor., 53:33 (2020), 335201
A. Grassi, J. Gu, M. Marino, “Non-perturbative approaches to the quantum Seiberg-Witten curve”, J. High Energy Phys., 2020, no. 7, 106
M.-x. Huang, Yu. Sugimoto, X. Wang, “Quantum periods and spectra in dimer models and Calabi-Yau geometries”, J. High Energy Phys., 2020, no. 9, 168
N. Kan, M. Kuniyasu, K. Shiraishi, K. Takimoto, “Equivalent Hamiltonian approach to quantum cosmology of integrable models”, Class. Quantum Gravity, 37:10 (2020), 105002
Y. Emery, M. Marino, M. Ronzani, “Resonances and pt symmetry in quantum curves”, J. High Energy Phys., 2020, no. 4
A. Laptev, L. Schimmer, L. A. Takhtajan, “Weyl asymptotics for perturbed functional difference operators”, J. Math. Phys., 60:10 (2019), 103505