Аннотация:
We study the behavior of a class of convolution-type nonlinear transformations. Under some smallness conditions we prove the existence of fixed points and analyze the spectrum of the associated linearized operator.
Ключевые слова:
convolution, fixed point, Hermite polynomials.
Поступила в редакцию: 11.11.2008 Принята в печать: 09.02.2009
\RBibitem{LiSin09}
\by D. Li, Ya. G. Sinai
\paper Asymptotic Behavior of Generalized Convolutions
\jour Regul. Chaotic Dyn.
\yr 2009
\vol 14
\issue 2
\pages 248--262
\mathnet{http://mi.mathnet.ru/rcd550}
\crossref{https://doi.org/10.1134/S1560354709020051}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2505428}
\zmath{https://zbmath.org/?q=an:1229.47089}
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/rcd550
https://www.mathnet.ru/rus/rcd/v14/i2/p248
Эта публикация цитируется в следующих 5 статьяx:
Luo H., Liu J., Li X., “Periodic Behavior of a Class of Nonlinear Dynamic Systems Based on the Runge-Kutta Algorithm”, J. Intell. Fuzzy Syst., 38:2, SI (2020), 1471–1476
Dong Li, Yakov G. Sinai, “An Application of the Renormalization Group Method to Stable Limit Laws”, J Stat Phys, 157:4-5 (2014), 915
C. Boldrighini, S. Frigio, P. Maponi, “Exploding solutions of the complex two-dimensional Burgers equations: Computer simulations”, Journal of Mathematical Physics, 53:8 (2012)
D. Li, Ya. G. Sinai, “Blowups of complex-valued solutions for some hydrodynamic models”, Regul. Chaotic Dyn., 15:4 (2010), 521–531
Dong Li, Yakov G. Sinai, “Singularities of complex-valued solutions of the two-dimensional Burgers system”, Journal of Mathematical Physics, 51:1 (2010)