|
Эта публикация цитируется в 11 научных статьях (всего в 11 статьях)
Darboux Points and Integrability of Homogeneous Hamiltonian Systems with Three and More Degrees of Freedom
M. Przybylska Toruń Centre for Astronomy, N. Copernicus University,
Gagarina 11, PL-87–100 Toruń, Poland
Аннотация:
We consider natural complex Hamiltonian systems with $n$ degrees of
freedom given by a Hamiltonian function which is a sum of the standard
kinetic energy and a homogeneous polynomial potential $V$ of degree
$k>2$. The well known Morales–Ramis theorem gives the strongest known
necessary conditions for the Liouville integrability of such systems. It
states that for each $k$ there exists an explicitly known infinite set
${\mathcal M}_k\subset{\mathbb Q}$ such that if the system is integrable,
then all eigenvalues of the Hessian matrix $V''({\boldsymbol d})$ calculated at a
non-zero ${\boldsymbol d}\in{\mathbb C}^n$ satisfying $V'({\boldsymbol d})={\boldsymbol d}$,
belong to ${\mathcal M}_k$.
The aim of this paper is, among others, to sharpen this result. Under
certain genericity assumption concerning $V$ we prove the following fact.
For each $k$ and $n$ there exists a finite set ${\mathcal I}_{n,k}\subset{\mathcal M}_k$
such that if the system is integrable, then all eigenvalues of the Hessian
matrix $V''({\boldsymbol d})$ belong to ${\mathcal I}_{n,k}$. We give an algorithm which
allows to find sets ${\mathcal I}_{n,k}$.
We applied this results for the case $n=k=3$ and we found all integrable
potentials satisfying the genericity assumption. Among them several are
new and they are integrable in a highly non-trivial way. We found three
potentials for which the additional first integrals are of degree 4 and 6
with respect to the momenta.
Ключевые слова:
integrability, Hamiltonian systems, homogeneous potentials, differential Galois group.
Поступила в редакцию: 30.05.2008 Принята в печать: 14.01.2009
Образец цитирования:
M. Przybylska, “Darboux Points and Integrability of Homogeneous Hamiltonian Systems with Three and More Degrees of Freedom”, Regul. Chaotic Dyn., 14:2 (2009), 263–311
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/rcd551 https://www.mathnet.ru/rus/rcd/v14/i2/p263
|
Статистика просмотров: |
Страница аннотации: | 88 |
|