Аннотация:
We consider a natural Lagrangian system defined on a complete Riemannian
manifold being subjected to action of a time-periodic force field with potential U(q,t,ε)=f(εt)V(q)U(q,t,ε)=f(εt)V(q) depending slowly on time.
It is assumed that the factor f(τ)f(τ) is periodic and vanishes at least at one point on the period.
Let XcXc denote a set of isolated critical points of V(x)V(x) at which V(x)V(x) distinguishes its maximum or minimum.
In the adiabatic limit ε→0ε→0 we prove the existence of a set EhEh such that the system possesses a rich class of doubly
asymptotic trajectories connecting points of XcXc for ε∈Ehε∈Eh.
Образец цитирования:
Alexey V. Ivanov, “Connecting Orbits near the Adiabatic Limit of Lagrangian Systems with Turning Points”, Regul. Chaotic Dyn., 22:5 (2017), 479–501
\RBibitem{Iva17}
\by Alexey V. Ivanov
\paper Connecting Orbits near the Adiabatic Limit of Lagrangian Systems with Turning Points
\jour Regul. Chaotic Dyn.
\yr 2017
\vol 22
\issue 5
\pages 479--501
\mathnet{http://mi.mathnet.ru/rcd271}
\crossref{https://doi.org/10.1134/S1560354717050021}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000412030900002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85030157552}
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/rcd271
https://www.mathnet.ru/rus/rcd/v22/i5/p479
Эта публикация цитируется в следующих 10 статьяx:
Alexey V. Ivanov, “On SL(2,R)-Cocycles over Irrational Rotations with Secondary Collisions”, Regul. Chaotic Dyn., 28:2 (2023), 207–226
Alexey V. Ivanov, 2023 Days on Diffraction (DD), 2023, 113
Alexey V. Ivanov, “On Singularly Perturbed Linear Cocycles over Irrational Rotations”, Regul. Chaotic Dyn., 26:3 (2021), 205–221
Alexey V. Ivanov, 2021 Days on Diffraction (DD), 2021, 1
Alexey V. Ivanov, Polina Yu. Panteleeva, 2021 Days on Diffraction (DD), 2021, 1
Alexey V. Ivanov, “On Singularly Perturbed Linear Cocycles over Irrational Rotations”, Regul. Chaot. Dyn., 26:3 (2021), 205
A. V. Ivanov, “Exponential dichotomy of linear cocycles over irrational rotations”, Proceedings of the 2020 International Conference Days on Diffraction (Dd), eds. O. Motygin, A. Kiselev, L. Goray, T. Zaboronkova, A. Kazakov, A. Kirpichnikova, IEEE, 2020, 38–43
Alexey V. Ivanov, “On Transversal Connecting Orbits of Lagrangian Systems in a Nonstationary Force Field: the Newton – Kantorovich Approach”, Regul. Chaotic Dyn., 24:4 (2019), 392–417
Alexey V. Ivanov, Polina Yu. Panteleeva, 2019 Days on Diffraction (DD), 2019, 78
A. V. Ivanov, “Transversal connecting orbits of Lagrangian systems with turning points: Newton-Kantorovich method”, 2018 Days on Diffraction (DD), eds. O. Motygin, A. Kiselev, L. Goray, A. Kazakov, A. Kirpichnikova, M. Perel, IEEE, 2018, 149–154