|
Эта публикация цитируется в 2 научных статьях (всего в 2 статьях)
Weak Nonlinear Asymptotic Solutions for the Fourth Order Analogue of the Second Painlevé Equation
Ilia Yu. Gaiur, Nikolay A. Kudryashov Department of Applied Mathematics,
National Research Nuclear University MEPhI,
Kashirskoe sh. 31, Moscow, 115409 Russia
Аннотация:
The fourth-order analogue of the second Painlevé equation is considered. The monodromy manifold for a Lax pair associated with the $P_2^2$ equation is constructed. The direct monodromy problem for the Lax pair is solved. Asymptotic solutions expressed via trigonometric functions in the Boutroux variables along the rays $\phi = \frac{2}{5}\pi(2n+1)$ on the complex plane have been found by the isomonodromy deformations technique.
Ключевые слова:
$P_2^2$ equation, isomonodromy deformations technique, special functions, Painlevé transcendents.
Поступила в редакцию: 14.04.2017 Принята в печать: 11.05.2017
Образец цитирования:
Ilia Yu. Gaiur, Nikolay A. Kudryashov, “Weak Nonlinear Asymptotic Solutions for the Fourth Order Analogue of the Second Painlevé Equation”, Regul. Chaotic Dyn., 22:3 (2017), 266–271
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/rcd256 https://www.mathnet.ru/rus/rcd/v22/i3/p266
|
|