Аннотация:
In this paper we consider the control of a dynamically asymmetric balanced ball on a plane in the case of slipping at the contact point. Necessary conditions under which a control is possible are obtained. Specific algorithms of control along a given trajectory are constructed.
This work was supported by Analytic Departmental Target Program “Development of Scientific
Potential of Higher Schools” for 2012–2014, no.1.1248.2011, the Grant of the President of the
Russian Federation for Support of Leading Scientific Schools NSh-2964.2014.1, the grant of the
President of the Russian Federation for the Support of Young Doctors of Science (MD-2324.2013.1)
and Candidates of Science (MK-2171.2014.1).
Поступила в редакцию: 16.11.2013 Принята в печать: 19.12.2013
Образец цитирования:
Tatiana B. Ivanova, Elena N. Pivovarova, “Comments on the Paper by A.V. Borisov, A.A. Kilin, I.S. Mamaev "How to Control the Chaplygin Ball Using Rotors. II"”, Regul. Chaotic Dyn., 19:1 (2014), 140–143
\RBibitem{IvaPiv14}
\by Tatiana B. Ivanova, Elena N. Pivovarova
\paper Comments on the Paper by A.V. Borisov, A.A. Kilin, I.S. Mamaev "How to Control the Chaplygin Ball Using Rotors. II"
\jour Regul. Chaotic Dyn.
\yr 2014
\vol 19
\issue 1
\pages 140--143
\mathnet{http://mi.mathnet.ru/rcd145}
\crossref{https://doi.org/10.1134/S1560354714010092}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3181041}
\zmath{https://zbmath.org/?q=an:06506695}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000333239100009}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84897867190}