Regular and Chaotic Dynamics
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив
Импакт-фактор

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Regul. Chaotic Dyn.:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Regular and Chaotic Dynamics, 2023, том 28, выпуск 4-5, страницы 447–467
DOI: https://doi.org/10.1134/S1560354723520052
(Mi rcd1215)
 

Special Issue: On the 80th birthday of professor A. Chenciner

Attractive Invariant Circles à la Chenciner

Jessica Elisa Massetti

Dipartimento di Matematica e Fisica, Università degli Studi RomaTre, Largo San Leonardo Murialdo 1, 00144 Rome, Italy
Список литературы:
Аннотация: In studying general perturbations of a dissipative twist map depending on two parameters, a frequency $\nu$ and a dissipation $\eta$, the existence of a Cantor set $\mathcal C$ of curves in the $(\nu,\eta)$ plane such that the corresponding equation possesses a Diophantine quasi-periodic invariant circle can be deduced, up to small values of the dissipation, as a direct consequence of a normal form theorem in the spirit of Rüssmann and the “elimination of parameters” technique. These circles are normally hyperbolic as soon as $\eta\not=0$, which implies that the equation still possesses a circle of this kind for values of the parameters belonging to a neighborhood $\mathcal V$ of this set of curves. Obviously, the dynamics on such invariant circles is no more controlled and may be generic, but the normal dynamics is controlled in the sense of their basins of attraction.
As expected, by the classical graph-transform method we are able to determine a first rough region where the normal hyperbolicity prevails and a circle persists, for a strong enough dissipation $\eta\sim O(\sqrt{\varepsilon}),$ $\varepsilon$ being the size of the perturbation. Then, through normal-form techniques, we shall enlarge such regions and determine such a (conic) neighborhood $\mathcal V$, up to values of dissipation of the same order as the perturbation, by using the fact that the proximity of the set $\mathcal C$ allows, thanks to Rüssmann's translated curve theorem, an introduction of local coordinates of the type (dissipation, translation) similar to the ones introduced by Chenciner in [7].
Ключевые слова: nonconservative twist maps, invariant circles, elimination of parameters, normal forms.
Финансовая поддержка Номер гранта
PRIN 2020XBFL
The author has been supported by the research project PRIN 2020XBFL “Hamiltonian and Dispersive PDEs” of the Italian Ministry of Education and Research (MIUR) and by the INdAM- GNAMPA research project “Chaotic and Unstable Behaviors of Infinite-Dimensional Dynamical Systems”.
Поступила в редакцию: 10.03.2023
Принята в печать: 14.06.2023
Тип публикации: Статья
MSC: 37C05, 37E40, 37D10
Язык публикации: английский
Образец цитирования: Jessica Elisa Massetti, “Attractive Invariant Circles à la Chenciner”, Regul. Chaotic Dyn., 28:4-5 (2023), 447–467
Цитирование в формате AMSBIB
\RBibitem{Mas23}
\by Jessica Elisa Massetti
\paper Attractive Invariant Circles à la Chenciner
\jour Regul. Chaotic Dyn.
\yr 2023
\vol 28
\issue 4-5
\pages 447--467
\mathnet{http://mi.mathnet.ru/rcd1215}
\crossref{https://doi.org/10.1134/S1560354723520052}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/rcd1215
  • https://www.mathnet.ru/rus/rcd/v28/i4/p447
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Статистика просмотров:
    Страница аннотации:43
    Список литературы:21
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024