|
Special Issue: On the 80th birthday of professor A. Chenciner
Aubry Set on Infinite Cyclic Coverings
Albert Fathia, Pierre Pageaultb a Georgia Institute of Technology & ENS de Lyon (Emeritus),
School of Mathematics, 30332 Atlanta GA, USA
b Lycée Etienne Mimard,
32 Rue Etienne Mimard, 42000 Saint-Étienne, France
Аннотация:
In this paper, we study the projected Aubry set of a lift of a Tonelli Lagrangian
$L$ defined on the tangent bundle of a compact manifold $M$ to an infinite cyclic covering of $M$.
Most of weak KAM and Aubry – Mather theory can be done in this setting. We give a necessary
and sufficient condition for the emptiness of the projected Aubry set of the lifted Lagrangian
involving both Mather minimizing measures and Mather classes of $L$. Finally, we give Mañè
examples on the two-dimensional torus showing that our results do not necessarily hold when
the cover is not infinite cyclic.
Ключевые слова:
Aubry – Mather theory, weak KAM theory, infinite cyclic coverings.
Поступила в редакцию: 25.01.2023 Принята в печать: 12.05.2023
Образец цитирования:
Albert Fathi, Pierre Pageault, “Aubry Set on Infinite Cyclic Coverings”, Regul. Chaotic Dyn., 28:4-5 (2023), 425–446
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/rcd1214 https://www.mathnet.ru/rus/rcd/v28/i4/p425
|
Статистика просмотров: |
Страница аннотации: | 49 | Список литературы: | 19 |
|