Видеотека
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Видеотека
Архив
Популярное видео

Поиск
RSS
Новые поступления






Летняя школа «Современная математика», 2014
22 июля 2014 г. 11:15, г. Дубна
 


Ветвящиеся объемы и группы отражений. Лекция 2

В. А. Васильев
Видеозаписи:
Flash Video 508.2 Mb
MP4 666.0 Mb

Количество просмотров:
Эта страница:502
Видеофайлы:192

В. А. Васильев



Аннотация: Из одной теоремы Архимеда следует, что объем, отсекаемый плоскостью от шара или эллипсоида, алгебраически зависит от коэффициентов уравнения плоскости. Напротив, в двумерном случае Ньютон доказал, что такой зависимости не может быть ни для эллипса, ни для любой другой гладкой выпуклой фигуры.
В 1987 году, перечитывая главную книгу Ньютона, В. ⁠И. ⁠Арнольд предположил, что эти факты верны и для старших размерностей и любых областей: ни для какой области с гладкой границей в четномерном пространстве соответствующая функция объема не является алгебраической, в нечетномерных же пространствах эта функция алгебраична только у эллипсоидов. Первая из этих гипотез – о четномерном случае – была окончательно доказана в прошлом году, вскоре после лекций на эту тему на ЛШСМ-2013; нечетномерная же задача еще ждет своего полного решения.
Я расскажу про все это, и вообще про набор соображений, позволяющих доказывать утверждения такого типа – теорию монодромии, которая, в частности, описывает сложность продолжения функций объема (и многочисленных других функций математической физики, например поверхностных потенциалов и решений волновых уравнений) в комплексную область. Современный топологический аппарат этой науки называется теорией Пикара–Лефшеца и будет описан в лекциях С. ⁠М. ⁠Львовского. Еще один увлекательный сюжет, возникающий в этих вычислениях и играющий ключевую роль в решении четномерной задачи – теория групп преобразований, порожденных отражениями, о которой я тоже немного расскажу.
От слушателей требуется знакомство с комплексными числами (основная теорема алгебры, формула Муавра...) интегралами (теорема Ньютона–Лейбница) и векторными пространствами любой размерности. Для полного понимания полезно также знакомство с многомерным дифференциальным исчислением (формула Стокса, гомологии де Рама), но необходимые сведения из этой части я надеюсь либо объяснить на пальцах, либо оставить на веру слушателей.

Website: https://www.mccme.ru/dubna/2014/courses/vassiliev.htm
Цикл лекций
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024