Аннотация:
Система корней — этот конечный набор векторов в евклидовом пространстве, такой что для любого из этих векторов v зеркальная симметрия sv относительно гиперплоскости Hv, перпендикулярной к v, сохраняет систему, причем для всякого вектора v′ из системы sv(v′) – v′ является целым кратным вектора v.
В двумерном пространстве единственнными (приведенными и неприводимыми) системами корней являются нарисованные на картинке системы.
Система корней A2
Система корней B2
Система корней G2
Оказывается, системы корней можно полностью классифицировать. Возникает несколько «серий» (бесконечных последовательностей) и несколько «исключительных» систем.
Система корней E8
Мы поговорим о системах корней в пространствах произвольной размерности, их классификации, и возникающих в связи с этим диаграммах Дынкина. Кроме того, мы обсудим важное обобщение систем корней — аффинные системы и поговорим о том, в каких областях математики все это встречается.