Видеотека
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Видеотека
Архив
Популярное видео

Поиск
RSS
Новые поступления






Летняя школа «Современная математика», 2012
20 июля 2012 г. 11:15, г. Дубна
 


Системы корней и диаграммы Дынкина. Лекция 1

А. Г. Кузнецов
Видеозаписи:
Flash Video 556.2 Mb
Flash Video 3,333.2 Mb
MP4 2,113.8 Mb

Количество просмотров:
Эта страница:1891
Видеофайлы:981

А. Г. Кузнецов



Аннотация: Система корней — этот конечный набор векторов в евклидовом пространстве, такой что для любого из этих векторов $v$ зеркальная симметрия $s_v$ относительно гиперплоскости $H_v$, перпендикулярной к $v$, сохраняет систему, причем для всякого вектора $v'$ из системы $s_v(v')$$v'$ является целым кратным вектора $v$.
В двумерном пространстве единственнными (приведенными и неприводимыми) системами корней являются нарисованные на картинке системы.
A2.png
Система корней $A_2$

B2.png
Система корней $B_2$

G2.png
Система корней $G_2$

Оказывается, системы корней можно полностью классифицировать. Возникает несколько «серий» (бесконечных последовательностей) и несколько «исключительных» систем.
E8.png
Система корней $E_8$

Мы поговорим о системах корней в пространствах произвольной размерности, их классификации, и возникающих в связи с этим диаграммах Дынкина. Кроме того, мы обсудим важное обобщение систем корней — аффинные системы и поговорим о том, в каких областях математики все это встречается.

Website: https://www.mccme.ru/dubna/2012/courses/kuznetsov.htm
Цикл лекций
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024