Видеотека
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Видеотека
Архив
Популярное видео

Поиск
RSS
Новые поступления






Международная конференция по математической физике, посвященная столетию со дня рождения В. С. Владимирова (Владимиров-100)
10 января 2023 г. 13:30–14:00, г. Москва, МИАН, комн. 430 (ул. Губкина, 8) + Zoom
 


Contributions to the convolution and $\Psi$DO's over ultradistribution spaces

S. Pilipović

University of Novi Sad
Видеозаписи:
MP4 40.9 Mb
Дополнительные материалы:
Adobe PDF 250.1 Kb

Количество просмотров:
Эта страница:154
Видеофайлы:26
Материалы:25



Аннотация: The convolution of distributions was studied from the early beggining of the distribution theory, by many authors. Important contribution was given by Professor Vladimirov. I have studied, with my students, convolution in various spaces of distributions and ultradistributions. The aim of this talk is to show that one can extend the Anti-Wick calculus over $\mathcal D^{\{M_p\}}(\mathbb{R}^d)$ for ultradistributions in ${\mathcal S'}_{\{A_p\}}^{\{M_p\}}(\mathbb{R}^d)$ with very weak assumptions on $A_p$ and conditions on $M_p$ related to the sequence $p!^m, m>1$ noted in the abstract. This is done by the use of the Wigner transform $W(\varphi,\varphi)$ with $\varphi $ being ultradifferentiable functions with the fast decrease as $|x|\rightarrow \infty.$ We develop the theory for $\varphi=e^{-r{\langle \cdot\rangle^q}},\; r>0, q\geq 1,$ as well as for $\varphi$ satisfying even faster decay. Special example is $\varphi= \exp{(-se^{{\langle\cdot\rangle}^q})}, s>0,q\geq 1.$ Note that we have given earlier a complete answer in our analysis related to the convolution with the kernel $e^{a|\cdot|^q},a>0$ and the related Anti-Wick calculus, in the case when $\varphi$ is a Gaussian.

Дополнительные материалы: Pilipovic.pdf (250.1 Kb)

Язык доклада: английский
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024