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Convolution

Let f , g ∈ D′.
V. S. Vladimirov: Let ηk(x , y), k ∈ N, be a sequence in D(R2d) so
that ηk equals one on the ball centered at zero of radius k, for
every k ∈ N. Then the convolution is defined by

〈f ∗ g , φ〉 = 〈f (x)g(y), ηk(x , y)φ(x + y)〉, φ ∈ D(Rd)

if this limit exists. Modifications are given for S ′ and DLp spaces.



Convolutors-Multipliers

Recall that

Mφf (x) = F−1(φF(f ))(x) = F−1φ ∗ f

a(D)f (x) = Maf (x) = F−1(aF(f ))(x) = F−1(a) ∗ f (x)

If f ∈ (Sµν )′ what we can say about the multiplier

Mf : (Sαβ )′ → (Spq )′?

What we can say about convolution

f ∗ g(x) =

∫
Rn

f (x − t)g(t)dt, x ∈ Rn.

The product goes paralelly by the question concerning the
convolution in the framework of S ′(Rd) via

F(fg)(ξ) = (2π)d/2f̂ (ξ) ∗ ĝ(ξ)



ΨDO

Let a ∈ S ′(R2d). Then Psudodifferential operator is defined by

Opτ (a)u(x) =

∫
e i(x−y)ξa((1− τ)x + τy , ξ)u(y)d ′yd ′ξ, u ∈ S(Rd)

and aτ is its τ symbol. It maps S(Rd) into S ′(Rd).
Left quantization is obtain for τ = 0; then we put a(x ,D)
(Hörmander’s calculus). The short-time Fourier transform of
f ∈ S ′(Rd) with respect to (the fixed window function) φ ∈ S(Rd)
is defined by

(Vφf )(x , ξ) = F(f · φ(· − x))(ξ) =∫
Rd

e−itξe−|t−x |
2
f (t)dt, where φ(t) = e−

1
2
|t|2 .

(V ∗γ F (x , ξ))(t) =

∫
R2d

F (x , ξ)e2πiξ·tγ(t − x)dxdξ



Localization (Toeplitz) operators. Relation with the Weyl
Quantization

We also have

Aφ1,φ2
a u = (2π)−dV ∗φ1

(aVφ2u), u ∈ S(Rd).

It maps S(Rd) into S ′(Rd).

〈Lσf (x), g〉 = 〈σ,W (f , g)〉,

where W is the Wigner transformation

W (f , g)(x , ω) =

∫
e−2πiωt f (x − t/2)g(x + t/2)dt.

Again we have, if σ ∈ S ′µµ(R2d) then

Lσ : Sµµ (Rd)→ S ′
µ
µ(Rd)

continuously, µ ≥ 1/2.



Localization operators. Relation with the Weyl
Quantization

Now we come to the identity

σ = a ∗W (ϕ1, ϕ2).

On the right hand side we have a convolutor W (ϕ1, ϕ2) and we are
aimed to determine what is the domain DW (ϕ1,ϕ2) ⊂ S ′µµ(Rd) of

W (ϕ1, ϕ2) : a→ σ.

and what is the range in S ′µµ(Rd).

Especially, we will do this in the case ϕ1(t) = ϕ2(t) = 2d/4e−π|t|
2
,

when W (ϕ1, ϕ2)(x , ω) = 2de−2π(|x |2+|ω|2) and

σ = a ∗ e−cπ(|x |2+|ω|2) ⇒ σ̂ = c1âe
−c2(|x |2+|ω|2).

ec2(|x |2+|ω|2)σ̂ = â⇒ F−1(ec2(|x |2+|ω|2)) ∗ σ = a?



Ultradistributions; Preliminaries

BEURLING ULTRADISTRIBUTION SPACES,
ROUMIEU ULTRADISTRIBUTION SPACE

Mp = p! -QUASU-ANALYTIC CLASS;
Mp = p!s , s > 1-NON-QUASY-ANALYTIC CLASS

R denotes the set of sequences increasing to ∞.
The common notation for the symbols (Mp) and {Mp} will be *.

For h > 0 we denote by SMp ,h
Ap ,h

the (B)-space of all ϕ ∈ C∞(Rd) for
which the norm

σh(ϕ) = sup
α

h|α|
∥∥eA(h|·|)Dαϕ

∥∥
L∞(Rd )

Mα
<∞.



Ultradistributions; Preliminaries
For h1 < h2 the canonical inclusion SMp ,h2

Ap ,h2
→ SMp ,h1

Ap ,h1
is compact.

S(Mp)
(Ap) = lim←−

h→∞
SMp ,h
Ap ,h

, resp. S{Mp}
{Ap} = lim−→

h→0

SMp ,h
Ap ,h

.

S(Mp)
(Ap) is an (FS)-space and S{Mp}

{Ap} is a (DFS)-space; both Montel
spaces.

Moreover, S{Mp}
{Ap} = lim←−

rp∈R
SMp ,rp
Ap ,rp

.

We use S∗† as a common notation for these spaces.

For each h > 0, resp. (rp) ∈ R, SMp ,h
Ap ,h

, resp. SMp ,(rp)
Ap ,(rp) , is

continuously injected into S(Rd).

E(Mp)(U) = lim←−
K⊂⊂U

lim←−
h→0

E{Mp},h(K ), E{Mp}(U) = lim←−
K⊂⊂U

lim−→
h→∞

E{Mp},h(K ),

D(Mp)(U) = lim−→
K⊂⊂U

lim←−
h→0

D{Mp},h
K , D{Mp}(U) = lim−→

K⊂⊂U
lim−→
h→∞

D{Mp},h
K .



Assumptions and the Idea

In the first part we assume

(M.1) M2
p ≤ Mp−1Mp+1,

(M.2) Mp ≤ Chp min
r+l=p

MrMl

(M.3)
∑

p>k+1

Mp−1/Mp ≤ CHkMk+1/Mk ;

Recall the non quasi-analicity condition is

(M.3)′ :
∑
p

Mp/Mp+1 <∞

Topological properties to be used: Weak approximation property
and the ε tensor product.



Assumptions and the Idea

The main idea is to show that

〈T ∗ S(x), φ(x)〉 =

˜̃D′{Mp}
L1(Rd )

〈T (x)S(y)φ(x + y), 1x ,y 〉 ˜̃D{Mp}
L∞(Rd )

with suitable assumptions on ultradistributions S ,T and test
function φ



ε-tensor product

EεF , is the space of all bilinear functionals on E ′c × F ′c which are
hypocontinuous with respect to the equicontinuous subsets of E ′

and F ′. It is equipped with the topology of uniform convergence
on products of equicontinuous subsets of E ′ and F ′.

EεF ∼= Lε
(
E ′c ,F

) ∼= Lε (F ′c ,E) ,
If both E and F are complete then EεF is complete. The tensor
product E ⊗ F is injected in EεF under
(e ⊗ f )(e ′, f ′) = 〈e, e ′〉〈f , f ′〉. The induced topology on E ⊗ F is
the ε topology and we have the topological imbedding
E ⊗ε F ↪→ EεF .



ε-tensor product

The l.c.s. E is said to have the sequential approximation property
(resp. the weak sequential approximation property) if the identity
mapping Id : E −→ E is in the sequential limit set (resp. the
sequential closure) of E ′ ⊗ E in Lc(E ,E ).

Theorem
If E and F are complete l.c.s. and if either E or F has the weak
approximation property then EεF is isomorphic to E ⊗̂εF .



Lebessgue’s type spaces of ultradistributions

Let p ∈ [1,∞].

D(Mp)
Lp (Rd) = lim←−

h→∞
DMp ,h

Lp (Rd)

resp.

D{Mp}
Lp (Rd) = lim−→

h→0

DMp ,h(Rd)

where DMp ,h
Lp (Rd) is the space of smooth functions φ so that

sup
p∈Nd

0 ,x∈Rd

|φ(p)(x)|
hpMp

<∞.



Convolution. I case

We know that D{Mp}
L∞ is the inductive limit of spaces D{Mp}

L∞,h . Recall

D̃{Mp}
L∞ is the projective limit of

D̃{Mp}
L∞,rp

= {φ : || Dαφ
Mp

∏p
i=1 ri
||L∞ <∞}.

For g ∈ C0

(
Rd
)

(the space of all continuous functions that vanish
at infinity) and (tj) ∈ R, consider the seminorms

pg ,(tj )(ϕ) = sup
α∈Nd

sup
x

|g(x)Dαϕ(x)|
TαMα

, ϕ ∈ D̃{Mp}
L∞ .

They generate Hausdorff locally convex topology on D̃{Mp}
L∞ and

this space with this topology will be denoted by ˜̃D{Mp}
L∞ . Note that

the inclusions D̃{Mp}
L∞ −→ ˜̃D{Mp}

L∞ and D{Mp} −→ ˜̃D{Mp}
L∞ −→ E{Mp}

are continuous.



Convolution. I case

˙̃B{Mp}
(
Rd
)

has the weak approximation property.
˙̃B{Mp}

(
Rd ,E

)
= ˙̃B{Mp}

(
Rd
)
εE

D{Mp} is dense in ˜̃D{Mp}
L∞ . ( ˜̃D{Mp}

L∞ )′ = D̃
′{Mp}
L1



Convolution-Definition

Let S ,T ∈ D′{Mp}
(
Rd
)

are such that for all ϕ ∈ D{Mp}
(
Rd
)
,

(S ⊗ T )ϕ∆ ∈ D̃
(
R2d

)
.

Define the convolution of S and T , S ∗ T ∈ D′{Mp}
(
Rd
)
, by

〈T ∗ S(x), φ(x)〉 =

˜̃D′{Mp}
L1(Rd )

〈T (x)S(y)φ(x + y), 1x ,y 〉 ˜̃D{Mp}
L∞(Rd )



Convolution. Non-quasi-analytic case

Theorem
Let S ,T ∈ D′{Mp}

(
Rd
)
. The following are equivalent:

i) the convolution of S and T exists;

ii) ....;

iii) ....;

iv) for all ϕ ∈ D{Mp}
(
Rd
)
,
(
ϕ ∗ Ť

)
S ∈

(
˜̃D{Mp}
L∞

)′ (
Rd
)

and for

every compact subset K of Rd , the bilinear mapping

(ϕ, χ) 7→
〈(
ϕ ∗ Ť

)
S , χ

〉
, D{Mp}

K × ˙̃B{Mp}
(
Rd
)
−→ C, is

continuous;

v) for all ϕ,ψ ∈ D{Mp}
(
Rd
)
,
(
ϕ ∗ Š

)
(ψ ∗ T ) ∈ L1

(
Rd
)
.



Convolution with the gaussian kernel

B∗ = {S ∈ D∗ : cosh(k |x |)S ∈ S∗, k > 0}, B∗s = e−s|x |
2
B∗

A∗ = {f ∈ O : ∀K∃h,C ( resp. )∀h∃C , |f (ξ + iη)| ≤ CeM(h|η|)}

A∗s = es|x |
2
A∗real .

Theorem
Let s ∈ R, s 6= 0. Then

a) The convolution of S ∈ D′∗ and es|x |
2

exists if and only if
S ∈ B∗s .

c) The mapping B∗s −→ A∗s , S 7→ S ∗ es|x |2 is bijective and for

S ∈ B∗s ,
(
S ∗ es|·|2

)
(x) = es|x |

2L
(
es|·|

2
S
)

(2sx).



A new class of Anti-Wick operators

This Theorem allows us to define Anti-Wick operators
Aa : D∗

(
Rd
)
−→ D′∗

(
Rd
)
, when a is not necessary in S ′∗

(
R2d

)
.

Let a ∈ B∗−1 and b(x , ξ) = π−d
(
a(·, ·) ∗ e−|·|2−|·|2

)
(x , ξ) be such

that for every ϕ ∈ D∗
(
R2d

)
the integral

1

(2π)d

∫
Rd

∫
Rd

∫
Rd

e i(x−y)ξb

(
x + y

2
, ξ

)
ϕ(x , y)dxdydξ (1)

is well defined as oscillatory integral defining an ultradistribution.
Then the operator associated to the corresponding kernel is the
Anti-Wick operator with symbol a. This is appropriate
generalization of Anti-Wick operators.



Definitions

Assumptions for Mp = ∗: (M.1), (M.2) and (M.5) : M r
p satisfies

(M.3)
Assumptions for Ap = †: M.1, (M.2) and (M.6) : p! ⊂ Ap

S{Mp}
{Ap} = lim←−

(ri ),(sj )∈R
SMp,rp

Ap,sp
, where

SMp,sp

Ap,sp
=
{
ϕ ∈ C∞

(
Rd
)
|‖ϕ‖(rp),(sq) <∞

}
and

‖ϕ‖(rp),(sq) = sup
α∈Nd

∥∥∥Dαϕ(x)eNsp (|x |)
∥∥∥
L∞

Mα
∏|α|

p=1 rp
. Also, the Fourier

transform is a topological automorphism of S∗ and of S ′∗.



Definitions

Recall, M(ρ) = supp ln+
ρp

Mp
, ρ > 0 (for Mp), and for

Np = Ap
∏p

i=1 si , Nsp(ρ) = supp ln+
ρp

Np

It is said that P(ξ) =
∑
l∈Nd

0

alξ
l , ξ ∈ Rd , is an ultrapolynomial of

Beurling class (of Roumieu class), if the coefficients al satisfy:

(∃a > 0, ∃Ca > 0) (resp. ∀a > 0, ∃Ca > 0) (∀l ∈ Nd
0 ) |al | ≤ Caa

|l |/Ml .

The corresponding operator P(D) =
∑

l∈Nn
0
alD

l is an

ultradifferential operator of Beurling class (resp. Roumieu class).



New class of sequences -test spaces

Let η be a weight (η(x + h) ≤ Cea(τ |h|) ∃C , h; ∀τ∃C ...)
L1
η = L1/η, L∞η = L∞η.

We know that S∗† (Rd) is not dense in D∗L∞η nor in D̃{Mp}
L∞η

.

D{Mp}
L∞η

is regular and complete.

D{Mp}
L∞η

is injected continuously into D̃{Mp}
L∞η

and this inclusion is in

fact surjective. As usual, we denote by B∗η the space D∗L∞η and by

Ḃ∗η the closure of S∗† (Rd) in B∗η. We denote by ˙̃B{Mp}
η the closure

of S{Mp}
{Ap} (Rd) in D̃{Mp}

L∞η
.

D∗E (E = Lpη) possesses the weak approximation property except
p =∞



Parametrix-Inluding quasy-analytic case

Lemma
Let r ′ ≥ 1 and k > 0, resp. (kp) ∈ R. There exists an
ultrapolynomial P(z) of class (Mp), resp. of class {Mp}, such that
the function x 7→ 1/P(x) is in C∞(Rd) and it satisfies the
following estimate:
there exists C > 0 such that for all x ∈ Rd and α ∈ Nd∣∣∣∣Dα

(
1

P(x)

)∣∣∣∣ ≤ C
α!

r ′|α|
e−M(k|x |), resp. (2)∣∣∣∣Dα

(
1

P(x)

)∣∣∣∣ ≤ C
α!

r ′|α|
e−Nkp (|x |). (3)

Lemma
For every t > 0, resp. (tp) ∈ R there exists G ∈ SMp ,t

Ap ,t
, resp.

G ∈ SMp ,(tp)
Ap ,(tp) and an ultradifferential operator P(D) of class (Mp),

resp. {Mp}, such that P(D)G = δ.



Convolution

Theorem
The spaces D∗L∞η ,c and ˜̃D∗L∞η are isomorphic as l.c.s.

Theorem
The spaces

(
D∗L∞η ,c

)′
b

and D′∗L1
η

are isomorphic as l.c.s.

Definition
If f1, f2 ∈ S ′∗† (Rd). We say that the convolution of f1 and f2 exists

if for each ϕ ∈ S∗† (Rd), (f1 ⊗ f2)ϕ∆ ∈ D′∗L1(R2d) and we define
their convolution by

〈f1 ∗ f2, ϕ〉 = D′∗
L1 (R2d )〈(f1 ⊗ f2)ϕ∆, 1x ,y 〉D∗L∞,c (R2d ), ∀ϕ ∈ S∗† (Rd),

where 1x ,y is the functions that is identically equal to 1.



Convolution

Theorem
Let f1, f2 ∈ S ′∗† (Rd). The following statements are equivalent

i) the convolution of f1 and f2 exists;

ii) for all ϕ ∈ S∗† (Rd), (ϕ ∗ f̌1)f2 ∈ D′∗L1 ;

iii) for all ϕ ∈ S∗† (Rd), (ϕ ∗ f̌2)f1 ∈ D′∗L1 ;

iv) for all ϕ,ψ ∈ S∗† (Rd), (ϕ ∗ f̌1)(ψ ∗ f2) ∈ L1(Rd).



Sufficient conditions for the convolution with es〈·〉
q

, q ≥ 1,
s > 0

Assume (M.1), (M.2) and (M.5) there exists q > 0 such that Mq
p

is strongly non-quasianalytic , i.e., there exists c0 ≥ 1 such that∑∞
j=p+1 M

q
j−1/M

q
j ≤ c0pM

q
p /M

q
p+1, ∀p ∈ Z+;

(M.6) p! ⊂ Mp, i.e. there exist C , L > 0 such that p! ≤ CLpMp,
∀p ∈ N

Theorem
Let q1 > q ≥ 1, s ∈ R\{0} and S ∈ S ′{Mp}

{p!1/q1}(R
d). If

es〈·〉
q
ek〈·〉

(q−1)q1/(q1−1)
S ∈ D′{Mp}

L1 (Rd), for all k ≥ 0, (4)

then the S ′{Mp}
{p!1/q1}-convolution of S and es〈·〉

q
exists.



Necessary conditions for the convolution with es〈·〉
q

, q ≥ 1,
s > 0

Let q1 > q ≥ 1, s ∈ R\{0}.

Theorem
(i) Assume p!2−1/q ⊂ Mp, S ∈ S ′{Mp}

{p!1/q1}(R
d and that the

convolution
S ∗ es〈·〉q exists.

Then
es
′〈·〉qS ∈ D′{Mp}

L1 (Rd), for all s ′ < s.

(ii) With the same assumptions

es〈·〉
q
ek〈·〉

(q−1)q1/(q1−1)
S ∈ D′{Mp}

L1 (Rd), for all k ≥ 0.



Necessary conditions for the convolution with es〈·〉
q

Theorem
Let q > 1, s > 0 and S ∈ S ′{Mp}

{p!1/q}(R
d). The S ′{Mp}

{p!1/q}-convolution

of S and es〈·〉 exists if and only if es〈·〉S ∈ D′{Mp}
L1 (Rd).

Theorem
Let q1 > q ≥ 1, s > 0, p!2−1/q ⊂ Mp and S ∈ S ′{Mp}

{p!1/q1}(R
d). If the

S ′{Mp}
{p!1/q1}-convolution of S and es〈·〉

q
exists then the

S ′{Mp}
{p!1/q1}-convolution of S and es

′〈·〉q also exists for all s ′ < s,

s ′ 6= 0.



Sufficient condition for the extension

Suppose that for every K ⊂⊂ Rd there exist {kp}, h > 0and
Ch > 0 such that

hα

α!
|∂αx b(x , ξ)| ≤ Che

Nkp (〈ξ〉), x ∈ K , ξ ∈ Rd . (5)

Then we will be able to generalize the notion of localization
operator. Let b = π−da ∗W (e−r〈x〉

q
, e−r〈x〉

q
) satisfy (8). Then the

integral

(2π)−d
∫
Rd

∫
Rd

∫
Rd

e i(x−y)ξb(
x + y

2
, ξ)χ(x , y)dxdydξ = 〈K (x , y), χ(x , y)〉

is a well defined oscillatory integral It defines the localization
operator with symbol a and window ϕ.
So, if one has a symbol a belonging to a certain space of
ultradistribution so that (5) holds, then by this integral is defined
Weyl Hormander operator over the space of the corresponding test
functions .



Extension
We define the Anti-Wick operators Aa : D{Mp}(Rd)→ D{Mp}(Rd)
when

a ∈ B
{Mp}
−r = {S = er |x |

2
cosh(−k|x |)G (ξ);G (ξ) ∈ S ′{Mp}

{Mp} (Rd)}(X = (x , ξ)).

a(x , ξ) = Prp(Dx)Plp(Dξ)(e l |x |
q
Psp(ξ)f (x , ξ)) (6)

where Prp(Dx),Plp(Dξ) are pseudodifferential operators, Psp(ξ) is
ultrapolynomial, all of them corresponding to Mp, and f (x , ξ) is an
L∞- function over (R2d). Clearly,

B
{Mp}
−l ,q (R2d) ⊂ D′{Mp}(R2d) \ S ′{Mp}

q (R2d)

Theorem
Let 0 < l < r/2q and a(x , ξ) ∈ B

{Mp}
−l ,q (R2d), a(x , ξ) be of the form

(6). Let
b = a(x , ξ) ∗W (e−r〈x〉

q
, e−r〈x〉

q
)(x , ξ).

Then b defines a symbol of a ΨDO which can be extended over
elements of the given form in D′{Mp}
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