Аннотация:
Фризы были определены в работах Конвея и Коксетера в 1973 г., однако всплеск интереса к ним произошел в недавнее время в связи с появившейся в начале 2000-х гг. теорией кластерных алгебр. Фриз — это таблица из чисел, удовлетворяющая условию унимодальности: для любых четырех чисел a,b,c,da,b,c,d в вершинах единичного ромба верно равенство ad−bc=1ad−bc=1, и граничным условиям: первая и последняя строки состоят из одних единиц. Такие таблицы обладают рядом загадочных свойств: например, они оказываются периодичными с периодом m+3m+3, где mm — число неединичных строк, а фризы с целыми положительными элементами соответствуют триангуляциям (m+3)(m+3)-угольника.
Мы обсудим эти свойства фризов и выясним, как они связаны с различными способами разложения рационального числа в цепную дробь, сложением дробей «по Фарею» и при чем тут действие группы PSL(2,ℤ).