Видеотека
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Видеотека
Архив
Популярное видео

Поиск
RSS
Новые поступления






Летняя школа «Современная математика», 2007
21 июля 2007 г. 09:30, г. Дубна
 


Теорема Гёделя о неполноте и четыре дороги, ведущие к ней. Лекция вторая

В. А. Успенский
Видеозаписи:
Real Video 219.5 Mb
Windows Media 231.9 Mb
Flash Video 271.7 Mb
MP4 542.6 Mb
Дополнительные материалы:
Adobe PDF 150.1 Kb

Количество просмотров:
Эта страница:2526
Видеофайлы:1328
Материалы:328

В. А. Успенский



Аннотация: Теорема Гёделя о неполноте — едва ли не самая знаменитая теорема математики. Она утверждает, что какие бы способы доказывания ни предложить, в любом достаточно богатом языке найдутся истинные, но не доказуемые утверждения. Богатство языка есть его способность выражать факты. Оказывается, что для целей теоремы Гёделя богатство языка достаточно понимать как его способность выражать принадлежность натуральных чисел перечислимым множествам.
Понятие перечислимого множества — одно из основных понятий теории алгоритмов: непустое множество называется перечислимым, если его можно расположить в вычислимую последовательность. Таким образом, теорема Гёделя имеет алгоритмические истоки. Возможны четыре принципиально различные пути, ведущие от этих истоков к теореме; эти пути были предложены, сооответственно, Гёделем, Колмогоровым, Чейтином и Шенем.

Дополнительные материалы: 123.pdf (150.1 Kb)
Цикл лекций
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024