|
|
Публикации в базе данных Math-Net.Ru |
Цитирования |
|
2024 |
1. |
Б. С. Сеплярский, Р. А. Кочетков, Т. Г. Лисина, Н. И. Абзалов, Д. С. Васильев, “Экспериментально-теоретическое исследование влияния структуры пористой среды и примесного газовыделения на закономерности горения смесей Ti–Si–C”, Физика горения и взрыва, 60:5 (2024), 76–85 |
2. |
Б. С. Сеплярский, Р. А. Кочетков, Т. Г. Лисина, “Макрокинетика горения смесей, содержащих титан: влияние структуры смеси и размера частиц титана”, Физика горения и взрыва, 60:3 (2024), 19–31 ; B. S. Seplyarsky, R. A. Kochetkov, T. G. Lisina, “Combustion macrokinetics of titanium containing mixtures: effect of mixture structure and titanium particle size”, Combustion, Explosion and Shock Waves, 60:3 (2024), 294–305 |
3. |
Особенности тепло- и массообмена при горении гранулированной смеси $\rm Zr + 0.5\rm C$ в спутном потоке аргона
ТВТ, статья будет опубликована в одном из ближайших номеров |
4. |
Р. А. Кочетков, Б. С. Сеплярский, Д. С. Васильев, “Конвективный и кондуктивный режимы горения гранулированных СВС-смесей $\rm Ti$–$\rm C$–$\rm B$. Определение коэффициента теплообмена фильтрующегося газа с гранулами”, ТВТ, 62:1 (2024), 83–94 |
|
2023 |
5. |
Б. С. Сеплярский, Р. А. Кочетков, Т. Г. Лисина, Д. С. Васильев, “Причина увеличения скорости горения порошковой смеси $\mathrm{Ti}+\mathrm{C}$ при разбавлении медью”, Физика горения и взрыва, 59:3 (2023), 100–108 ; B. S. Seplyarsky, R. A. Kochetkov, T. G. Lisina, D. S. Vasiliev, “Reason for the increasing burning rate of $\mathrm{Ti} +\mathrm{C}$ powder mixture when diluted with copper”, Combustion, Explosion and Shock Waves, 59:3 (2023), 344–352 |
|
2022 |
6. |
Б. С. Сеплярский, Р. А. Кочетков, Т. Г. Лисина, Н. И. Абзалов, “Макрокинетика горения порошковых и гранулированных смесей титана с разными аллотропными формами углерода”, Физика горения и взрыва, 58:3 (2022), 110–116 ; B. S. Seplyarsky, R. A. Kochetkov, T. G. Lisina, N. I. Abzalov, “Macrokinetics of combustion of powder and granulated titanium mixtures with different allotropic forms of carbon”, Combustion, Explosion and Shock Waves, 58:3 (2022), 355–361 |
2
|
7. |
Б. С. Сеплярский, Н. И. Абзалов, Р. А. Кочетков, Т. Г. Лисина, “Макрокинетика горения гранулированных смесей $(\mathrm{Ti}+\mathrm{C})-\mathrm{Ni}$. Влияние размера гранул”, Физика горения и взрыва, 58:2 (2022), 58–63 ; B. S. Seplyarsky, N. I. Abzalov, R. A. Kochetkov, T. G. Lisina, “Combustion macrokinetics of granulated $(\mathrm{Ti}+\mathrm{C})-\mathrm{Ni}$ mixtures. Impact of grain size”, Combustion, Explosion and Shock Waves, 58:2 (2022), 178–183 |
5
|
8. |
Б. С. Сеплярский, Р. А. Кочетков, Т. Г. Лисина, Н. И. Абзалов, “Экспериментально-теоретическое определение коэффициента межфазового теплообмена при горении гранулированной СВС-смеси в потоке газа”, ТВТ, 60:1 (2022), 81–86 ; B. S. Seplyarsky, R. A. Kochetkov, T. G. Lisina, N. I. Abzalov, “Experimental-theoretical determining of the interphase heat transfer coefficient in the process of combustion of a granular SHS mixture in a gas flow”, High Temperature, 60:1 (2022), 73–78 |
1
|
|
2021 |
9. |
Б. С. Сеплярский, Р. А. Кочетков, Т. Г. Лисина, Н. И. Абзалов, “Режимы горения гранулированной смеси $\mathrm{Ti}+\mathrm{C}$ при различном содержании газифицирующейся добавки”, Физика горения и взрыва, 57:3 (2021), 88–96 ; B. S. Seplyarsky, R. A. Kochetkov, T. G. Lisina, N. I. Abzalov, “Combustion modes of the $\mathrm{Ti}+\mathrm{C}$ granular mixture with different content of gasifying additive”, Combustion, Explosion and Shock Waves, 57:3 (2021), 334–342 |
7
|
10. |
М. И. Алымов, Б. С. Сеплярский, С. Г. Вадченко, Р. А. Кочетков, Н. И. Абзалов, Н. М. Рубцов, И. Д. Ковалев, В. А. Зеленский, Ф. Ф. Галиев, “Исследование пассивации компактных образцов из пирофорных нанопорошков железа при их взаимодействии с воздухом”, Физика горения и взрыва, 57:3 (2021), 79–87 ; M. I. Alymov, B. S. Seplyarsky, S. G. Vadchenko, R. A. Kochetkov, N. I. Abzalov, N. M. Rubtsov, I. D. Kovalev, V. A. Zelensky, F. F. Galiev, “Passivation of compact samples from pyrophoric iron nanopowders during their interaction with air”, Combustion, Explosion and Shock Waves, 57:3 (2021), 326–333 |
4
|
11. |
Б. С. Сеплярский, Р. А. Кочетков, Т. Г. Лисина, Н. И. Абзалов, “Влияние размеров гранул $\mathrm{Ti}+\mathrm{C}$ на закономерности горения в потоке азота”, Физика горения и взрыва, 57:1 (2021), 65–71 ; B. S. Seplyarsky, R. A. Kochetkov, T. G. Lisina, N. I. Abzalov, “Effect of a $\mathrm{Ti}+\mathrm{C}$ granule size on combustion in a nitrogen flow”, Combustion, Explosion and Shock Waves, 57:1 (2021), 60–66 |
13
|
12. |
Н. М. Рубцов, Б. С. Сеплярский, А. П. Калинин, К. Я. Трошин, “К 125-летию со дня рождения лауреата Нобелевской премии академика Николая Николаевича Семенова. Цепной механизм воздействия добавок дихлордифторметана на горение водорода и метана в кислороде и воздухе”, ЖТФ, 91:6 (2021), 895–903 ; N. M. Rubtsov, B. S. Seplyarsky, A. P. Kalinin, K. J. Troshin, “The chain mechanism of the effect of dichlorodifluoromethane additives on the combustion of hydrogen and methane in oxygen and air”, Tech. Phys., 66:8 (2021), 929–937 |
1
|
|
2020 |
13. |
Н. А. Кочетов, Б. С. Сеплярский, “Влияние начальной температуры и механической активации на режим и закономерности синтеза в системе $\mathrm{Ti}+\mathrm{Al}$”, Физика горения и взрыва, 56:3 (2020), 69–77 ; N. A. Kochetov, B. S. Seplyarsky, “Effect of initial temperature and mechanical activation on synthesis in a $\mathrm{Ti}+\mathrm{Al}$ system”, Combustion, Explosion and Shock Waves, 56:3 (2020), 308–316 |
16
|
|
2019 |
14. |
Н. А. Кочетов, Б. С. Сеплярский, А. С. Щукин, “Зависимости скорости горения и фазового состава конденсированных продуктов смеси $\mathrm{Ti}+\mathrm{Ni}$ от времени механической активации”, Физика горения и взрыва, 55:3 (2019), 63–70 ; N. A. Kochetov, B. S. Seplyarsky, A. S. Shchukin, “Dependences of the burning rate and phase composition of condensed products of a $\mathrm{Ti}+\mathrm{Ni}$ mixture on the mechanical activation time”, Combustion, Explosion and Shock Waves, 55:3 (2019), 300–307 |
10
|
15. |
Б. С. Сеплярский, Р. А. Кочетков, Т. Г. Лисина, “Конвективный режим горения гранулированной смеси $\mathrm{Ti}+0.5\mathrm{C}$. Область существования и основные закономерности”, Физика горения и взрыва, 55:3 (2019), 57–62 ; B. S. Seplyarsky, R. A. Kochetkov, T. G. Lisina, “Convective combustion of a $\mathrm{Ti}+0.5\mathrm{C}$. Granulated mixture. domain of existence and fundamental phenomena”, Combustion, Explosion and Shock Waves, 55:3 (2019), 295–299 |
9
|
|
2016 |
16. |
Б. С. Сеплярский, Р. А. Кочетков, С. Г. Вадченко, “Закономерности горения порошковых и гранулированных смесей Ti + $x$C (1 $>x>$ 0.5)”, Физика горения и взрыва, 52:6 (2016), 51–59 ; B. S. Seplyarsky, R. A. Kochetkov, S. G. Vadchenko, “Combustion of the Ti + $x$C (1 $>x>$ 0.5) powder and granular mixtures”, Combustion, Explosion and Shock Waves, 52:6 (2016), 665–672 |
13
|
17. |
Б. С. Сеплярский, Н. А. Кочетов, Р. А. Кочетков, “Влияние механической активации на скорость горения прессованных образцов и образцов насыпной плотности из смеси Ni + Al”, Физика горения и взрыва, 52:3 (2016), 59–64 ; B. S. Seplyarsky, N. A. Kochetov, R. A. Kochetkov, “Impact of mechanical activation on the burning rate of pressed and bulk-density samples from a Ni + Al mixture”, Combustion, Explosion and Shock Waves, 52:3 (2016), 307–312 |
7
|
|
2015 |
18. |
Н. М. Рубцов, Б. С. Сеплярский, И. М. Набоко, В. И. Черныш, Г. И. Цветков, К. Я. Трошин, “Взаимодействие ламинарных пламен метано-воздушных смесей с мелкоячеистыми плоскими и сферическими препятствиями в замкнутом цилиндрическом реакторе при инициировании искровым разрядом”, ХФМ, 17:2 (2015), 183–191 |
19. |
Б. С. Сеплярский, А. Г. Тарасов, Р. А. Кочетков, “Влияние влажности на закономерности горения порошковых и гранулированных смесей Ti+0,5C в потоке инертного газа”, ХФМ, 17:1 (2015), 23–33 |
|
2014 |
20. |
Н. А. Кочетов, Б. С. Сеплярский, “Зависимость скорости горения от размера образца в системе Ni + Al”, Физика горения и взрыва, 50:4 (2014), 29–35 ; N. A. Kochetov, B. S. Seplyarsky, “Dependence of burning rate on sample size in the Ni + Al system”, Combustion, Explosion and Shock Waves, 50:4 (2014), 393–399 |
12
|
21. |
Б. С. Сеплярский, А. Г. Тарасов, Р. А. Кочетков, И. Д. Ковалёв, “Закономерности горения смеси Ti + TiC в спутном потоке азота”, Физика горения и взрыва, 50:3 (2014), 61–67 ; B. S. Seplyarsky, A. G. Tarasov, R. A. Kochetkov, I. D. Kovalev, “Combustion behavior of a Ti + TiC mixture in a nitrogen coflow”, Combustion, Explosion and Shock Waves, 50:3 (2014), 300–305 |
7
|
|
2013 |
22. |
Б. С. Сеплярский, А. Г. Тарасов, Р. А. Кочетков, “Экспериментальное исследование горения “безгазового” гранулированного состава Ti + 0.5C в спутном потоке аргона и азота”, Физика горения и взрыва, 49:5 (2013), 55–63 ; B. S. Seplyarsky, A. G. Tarasov, R. A. Kochetkov, “Experimental investigation of combustion of a gasless pelletized mixture of Ti + 0.5C in argon and nitrogen coflows”, Combustion, Explosion and Shock Waves, 49:5 (2013), 555–562 |
24
|
|
2011 |
23. |
Б. С. Сеплярский, Г. Б. Брауэр, А. Г. Тарасов, “Закономерности горения “безгазовой” системы Ti + 0.5C в спутном потоке азота”, Физика горения и взрыва, 47:3 (2011), 52–59 ; B. S. Seplyarsky, G. B. Brauer, A. G. Tarasov, “Combustion of the gasless system Ti + 0.5C in a nitrogen coflow”, Combustion, Explosion and Shock Waves, 47:3 (2011), 294–301 |
14
|
|
2010 |
24. |
Б. С. Сеплярский, Г. Б. Брауэр, А. Г. Тарасов, “Механизм распространения фронта реакции в смеси Cr$_2$O$_3$ + 2Al”, Физика горения и взрыва, 46:3 (2010), 69–74 ; B. S. Seplyarsky, G. B. Brauer, A. G. Tarasov, “Mechanism of reaction-front propagation in the Cr$_2$O$_3$ + 2Al mixture”, Combustion, Explosion and Shock Waves, 46:3 (2010), 301–306 |
1
|
|
2009 |
25. |
Б. С. Сеплярский, С. Г. Вадченко, С. В. Костин, Г. Б. Брауэр, “Закономерности горения смесей Ti+0.5C и Ti+C насыпной плотности в спутном потоке инертного газа”, Физика горения и взрыва, 45:1 (2009), 30–37 ; B. S. Seplyarsky, S. G. Vadchenko, S. V. Kostin, G. B. Brauer, “Combustion of Ti+0.5C and Ti+C mixtures of bulk density in inert gas coflow”, Combustion, Explosion and Shock Waves, 45:1 (2009), 25–31 |
11
|
|
2008 |
26. |
Б. С. Сеплярский, С. В. Костин, Г. Б. Брауэр, “Динамические режимы горения слоевой системы Ti–(Ti+0.5C) в спутном потоке азота”, Физика горения и взрыва, 44:6 (2008), 44–51 ; B. S. Seplyarsky, S. V. Kostin, G. B. Brauer, “Dynamic combustion regimes of the Ti–(Ti+0.5C) layered system in a concurrent nitrogen flow”, Combustion, Explosion and Shock Waves, 44:6 (2008), 655–661 |
4
|
|
2004 |
27. |
Б. С. Сеплярский, Т. П. Ивлева, Е. А. Левашов, “Математическое моделирование динамики химического превращения в тонких слоях экзотермических смесей при периодическом воздействии электроискровых разрядов”, Физика горения и взрыва, 40:3 (2004), 59–68 ; B. S. Seplyarsky, T. P. Ivleva, E. A. Levashov, “Mathematical modeling of chemical conversion in thin-layer exothermic mixtures under periodic electric-spark discharges”, Combustion, Explosion and Shock Waves, 40:3 (2004), 302–310 |
28. |
Б. С. Сеплярский, Т. П. Ивлева, “Анализ критических условий зажигания газовзвеси нагретым телом при импульсном подводе энергии”, Физика горения и взрыва, 40:2 (2004), 3–12 ; B. S. Seplyarsky, T. P. Ivleva, “Analysis of the critical conditions for ignition of gas–particle mixtures by a heated body with pulsed energy supply”, Combustion, Explosion and Shock Waves, 40:2 (2004), 127–135 |
|
2003 |
29. |
Б. С. Сеплярский, Т. П. Ивлева, “Приближенно-аналитический метод расчета временны́х характеристик зажигания газовзвеси нагретым телом”, Физика горения и взрыва, 39:5 (2003), 13–27 ; B. S. Seplyarsky, T. P. Ivleva, “Approximate analytical method for calculating the time characteristics of ignition of a gas mixture by a heated body”, Combustion, Explosion and Shock Waves, 39:5 (2003), 496–508 |
|
2001 |
30. |
Б. С. Сеплярский, Н. И. Ваганова, “Конвективное горение “безгазовых” систем”, Физика горения и взрыва, 37:4 (2001), 73–81 ; B. S. Seplyarsky, N. I. Vaganova, “Convective combustion of “gasless” systems”, Combustion, Explosion and Shock Waves, 37:4 (2001), 432–439 |
2
|
|
2000 |
31. |
Б. С. Сеплярский, “Закономерности зажигания пористых тел в условиях встречной нестационарной фильтрации газа”, Физика горения и взрыва, 36:4 (2000), 31–41 ; B. S. Seplyarsky, “Ignition of porous bodies under conditions of counterflow nonstationary filtration of a gas”, Combustion, Explosion and Shock Waves, 36:4 (2000), 442–451 |
1
|
|
1999 |
32. |
Б. С. Сеплярский, Т. П. Ивлева, Е. А. Левашов, “Влияние подогрева на структуру и пределы существования фронта горения в двухслойных образцах”, Физика горения и взрыва, 35:4 (1999), 67–74 ; B. S. Seplyarsky, T. P. Ivleva, E. A. Levashov, “Effect of heating on the structure and existence limits of the combustion front in two-layer specimens”, Combustion, Explosion and Shock Waves, 35:4 (1999), 410–417 |
33. |
Б. С. Сеплярский, И. С. Гордополова, “Исследование зажигания пористых веществ фильтрующимся газом (спутная нестационарная фильтрация)”, Физика горения и взрыва, 35:1 (1999), 49–59 ; B. S. Seplyarsky, I. S. Gordopolova, “Ignition of porous materials by gas filtration (unsteady downstream filtration)”, Combustion, Explosion and Shock Waves, 35:1 (1999), 43–52 |
1
|
|
1995 |
34. |
Б. С. Сеплярский, И. С. Гордополова, “Закономерности зажигания потоком энергии конденсированных систем, взаимодействующих через слой тугоплавкого продукта”, Физика горения и взрыва, 31:4 (1995), 3–9 ; B. S. Seplyarsky, I. S. Gordopolova, “Ignition of condensed systems interacting through a layer of high-melting product”, Combustion, Explosion and Shock Waves, 31:4 (1995), 405–410 |
|
1994 |
35. |
Б. С. Сеплярский, И. С. Гордополова, “Закономерности зажигания конденсированных систем накаленной поверхностью при параболическом законе взаимодействия”, Физика горения и взрыва, 30:6 (1994), 8–15 ; B. S. Seplyarsky, I. S. Gordopolova, “Ignition mechanisms in condensed systems using an incandescent surface for a parabolic interaction law”, Combustion, Explosion and Shock Waves, 30:6 (1994), 729–736 |
|
1991 |
36. |
Б. С. Сеплярский, “Воспламенение конденсированных систем при фильтрации газа”, Физика горения и взрыва, 27:1 (1991), 3–12 ; B. S. Seplyarsky, “Ignition of condensed systems with gas filtration”, Combustion, Explosion and Shock Waves, 27:1 (1991), 1–10 |
7
|
|
1990 |
37. |
С. Ю. Афанасьев, Б. С. Сеплярский, А. П. Амосов, “Расчет критических условий воспламенения системы очагов разогрева”, Физика горения и взрыва, 26:6 (1990), 16–20 ; S. Yu. Afanas'ev, B. S. Seplyarsky, A. P. Amosov, “Analysis of critical ignition conditions of a system of heating foci”, Combustion, Explosion and Shock Waves, 26:6 (1990), 634–637 |
1
|
38. |
Б. С. Сеплярский, “Зажигание конденсированных веществ при наличии теплопотерь с боковой поверхности”, Физика горения и взрыва, 26:5 (1990), 3–9 ; B. S. Seplyarsky, “Ignition of condensed materials in the presence of heat losses on the lateral surface”, Combustion, Explosion and Shock Waves, 26:5 (1990), 497–502 |
39. |
К. Ю. Воронин, Б. С. Сеплярский, А. П. Амосов, “Закономерности зажигания накаленной поверхностью конденсированного вещества при протекании двух последовательных экзотермических реакций”, Физика горения и взрыва, 26:2 (1990), 29–33 ; K. Yu. Voronin, B. S. Seplyarsky, A. P. Amosov, “Ignition features for a heated surface of condensed substance with occurrence of two successive exothermic reactions”, Combustion, Explosion and Shock Waves, 26:2 (1990), 152–156 |
40. |
Б. С. Сеплярский, К. Ю. Воронин, “Распространение волны горения второго рода при протекании двух экзотермических последовательных реакций”, Физика горения и взрыва, 26:1 (1990), 52–59 ; B. S. Seplyarsky, K. Yu. Voronin, “Second order combustion wave propagation during occurrence of two successive exothermic reactions”, Combustion, Explosion and Shock Waves, 26:1 (1990), 45–51 |
2
|
|
1989 |
41. |
Б. С. Сеплярский, С. Ю. Афанасьев, “Анализ нестационарной картины воспламенения очага разогрева”, Физика горения и взрыва, 25:6 (1989), 9–13 ; B. S. Seplyarsky, S. Yu. Afanas'ev, “Analysis of the unsteady pattern of the heating site ignition”, Combustion, Explosion and Shock Waves, 25:6 (1989), 665–669 |
1
|
|
1988 |
42. |
Б. С. Сеплярский, “Нестационарная теория зажигания конденсированных веществ накаленной поверхностью”, Докл. АН СССР, 300:1 (1988), 96–99 |
1
|
|
1983 |
43. |
А. П. Алдушин, Б. С. Сеплярский, “Фазовые переходы в инверсной волне фильтрационного горения”, Физика горения и взрыва, 19:4 (1983), 95–99 ; A. P. Aldushin, B. S. Seplyarsky, “Phase transitions in an inverse wave of filtration combustion”, Combustion, Explosion and Shock Waves, 19:4 (1983), 461–464 |
1
|
|
1980 |
44. |
А. П. Алдушин, Б. С. Сеплярский, К. Г. Шкадинский, “К теории фильтрационного горения”, Физика горения и взрыва, 16:1 (1980), 36–45 ; A. P. Aldushin, B. S. Seplyarsky, K. G. Shkadinskii, “Theory of filtrational combustion”, Combustion, Explosion and Shock Waves, 16:1 (1980), 33–40 |
32
|
|
1979 |
45. |
А. П. Алдушин, Б. С. Сеплярский, “Инверсия структуры волны горения в пористой среде при продуве газа”, Докл. АН СССР, 249:3 (1979), 585–589 |
|
1978 |
46. |
А. П. Алдушин, Б. С. Сеплярский, “Распространение волны экзотермической реакции в пористой среде при продуве газа”, Докл. АН СССР, 241:1 (1978), 72–75 |
2
|
|
1976 |
47. |
А. П. Алдушин, А. Г. Мержанов, Б. С. Сеплярский, “К теории фильтрационного горения металлов”, Физика горения и взрыва, 12:3 (1976), 323–332 ; A. P. Aldushin, A. G. Merzhanov, B. S. Seplyarsky, “Theory of filtration combustion of metals”, Combustion, Explosion and Shock Waves, 12:3 (1976), 285–294 |
18
|
|
1973 |
48. |
А. П. Алдушин, В. Н. Блошенко, Б. С. Сеплярский, “О воспламенении частиц металлов при логарифмическом законе окисления”, Физика горения и взрыва, 9:4 (1973), 489–496 ; A. P. Aldushin, V. N. Bloshenko, B. S. Seplyarsky, “Ignition of metal particles with a logarithmic oxidation law”, Combustion, Explosion and Shock Waves, 9:4 (1973), 423–428 |
7
|
|