|
Труды Московского математического общества, 2021, том 82, выпуск 1, страницы 157–174
(Mi mmo652)
|
|
|
|
Tiling billiards and Dynnikov's helicoid
O. Paris-Romaskevich Aix-Marseille Université
Аннотация:
Here are two problems. First, understand the dynamics of a tiling billiard in a cyclic quadrilateral periodic tiling. Second, describe the topology of connected components of plane sections of a centrally symmetric subsurface $S \subset \mathbb{T}^3$ of genus $3$. In this note we show that these two problems are related via a helicoidal construction proposed recently by Ivan Dynnikov. The second problem is a particular case of a classical question formulated by Sergei Novikov. The exploration of the relationship between a large class of tiling billiards (periodic locally foldable tiling billiards) and Novikov's problem in higher genus seems promising, as we show in the end of this note.
Ключевые слова и фразы:
Novikov's problem, tiling billiards, billiards, translation surfaces.
Поступила в редакцию: 20.02.2021
Образец цитирования:
O. Paris-Romaskevich, “Tiling billiards and Dynnikov's helicoid”, Тр. ММО, 82, no. 1, МЦНМО, М., 2021, 157–174; Trans. Moscow Math. Soc., 82 (2021), 133–147
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/mmo652 https://www.mathnet.ru/rus/mmo/v82/i1/p157
|
|