Loading [MathJax]/jax/output/SVG/config.js
Mendeleev Communications
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив
Правила для авторов

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Mendeleev Commun.:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Mendeleev Communications, 2019, том 29, выпуск 1, страницы 1–10
DOI: https://doi.org/10.1016/j.mencom.2019.01.001
(Mi mendc1403)
 

Эта публикация цитируется в 27 научных статьях (всего в 27 статьях)

Focus Article

Triacetic acid lactone as a bioprivileged molecule in organic synthesis

D. L. Obydennova, A. I. El-Tantawyab, V. Ya. Sosnovskikha

a Institute of Natural Sciences and Mathematics, Ural Federal University, Ekaterinburg, Russian Federation
b Department of Physics and Engineering Mathematics, Faculty of Electronic Engineering, Menoufia University, Menouf, Egypt
Аннотация: Major methods for the preparation of triacetic acid lactone and its application as a bioprivileged compound in the synthesis of various valuable materials are summarized. Due to its structural features, this lactone belongs to both pyrones and polyketides, which provides opportunities for its obtaining by chemical and biological methods. The presence of several electrophilic and nucleophilic centers in its molecule, as well as its capability of undergoing transformations with both preservation and opening of the ring, ensure its multiple reactivity. Reactions proceeding without the ring opening lead to substituted and fused pyrans, while the ring opening provides N-heterocycles and acyclic derivatives.
Тип публикации: Статья
Язык публикации: английский


Образец цитирования: D. L. Obydennov, A. I. El-Tantawy, V. Ya. Sosnovskikh, “Triacetic acid lactone as a bioprivileged molecule in organic synthesis”, Mendeleev Commun., 29:1 (2019), 1–10
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/mendc1403
  • https://www.mathnet.ru/rus/mendc/v29/i1/p1
  • Эта публикация цитируется в следующих 27 статьяx:
    1. Min Soo Kim, Longyuan Shi, Huimin Zhao, George W. Huber, “Production of a δ-Lactam from Glucose through Integrating Biological and Chemical Catalysis”, ACS Sustainable Chem. Eng., 2025  crossref
    2. Ching-Mei Wen, Charles Foster, Wouter van Winden, Marianthi Ierapetritou, “Toward Net-Zero Greenhouse Gas Emission: Techno–Economic and Life Cycle Analyses of Routes for Triacetic Acid Lactone (TAL) Bioproduction”, ACS Sustainable Chem. Eng., 12:33 (2024), 12430  crossref
    3. Ching-Mei Wen, Charles Foster, Marianthi Ierapetritou, Proceedings of the 10th International Conference on Foundations of Computer-Aided Process Design FOCAPD 2024, 3, Proceedings of the 10th International Conference on Foundations of Computer-Aided Process Design FOCAPD 2024, 2024, 933  crossref
    4. K. A. Kochetkov, M. A. Tsvetikova, O. N. Gorunova, N. A. Bystrova, V. S. Yufriakov, “Enantioselective synthesis of 5-fluoro-L-DOPA via chemoenzymatic route”, Mendeleev Commun., 34:1 (2024), 11–12  mathnet  crossref
    5. Yangming Liu, Yuhan Jin, Peng Xu, Li Deng, Huan Liu, Fang Wang, “Recent advances and perspectives on the biomass-derived production of the platform chemical triacetic acid lactone by engineered cell factories”, Biochemical Engineering Journal, 197 (2023), 108961  crossref
    6. Meifang Wang, Ruigang Xu, Yuheng Liu, Jiaqi Wang, Qing Xu, Linlong Dai, Haonan Xu, Qiaohong Zhu, Xiaofei Zeng, “Iridium-Catalyzed Asymmetric Allylic Substitution Reaction of 4-Hydroxypyran-2-one”, J. Org. Chem., 88:11 (2023), 6633  crossref
    7. Min Soo Kim, Dasol Choi, Jihyo Ha, Kyuhyeok Choi, Jae-Hyuk Yu, James A. Dumesic, George W. Huber, “Catalytic Strategy for Conversion of Triacetic Acid Lactone to Potassium Sorbate”, ACS Catal., 13:21 (2023), 14031  crossref
    8. Vladislav V. Fedin, Dmitrii L. Obydennov, Sergei A. Usachev, Vyacheslav Y. Sosnovskikh, “4-Hydroxy-2-pyrones: Synthesis, Natural Products, and Application”, Organics, 4:4 (2023), 539  crossref
    9. Shuaizhen Zhou, Zia Fatma, Pu Xue, Shekhar Mishra, Mingfeng Cao, Huimin Zhao, Jonathan V. Sweedler, “Mass Spectrometry-Based High-Throughput Quantification of Bioproducts in Liquid Culture”, Anal. Chem., 95:8 (2023), 4067  crossref
    10. Yaqin Wang, Bingfeng Chen, Haihong Wu, Xuelei Mei, Kaili Zhang, Bingxiao Zheng, Wanying Han, Jiao Xu, Mingyuan He, Buxing Han, “Green synthesis of δ-lactam from biomass-derived 4-hydroxy-6-methylpyridin-2(1H)-one”, Green Chem., 25:5 (2023), 1835  crossref
    11. Vladislav V. Fedin, Sergey A. Usachev, Dmitrii L. Obydennov, Vyacheslav Y. Sosnovskikh, “Reactions of Trifluorotriacetic Acid Lactone and Hexafluorodehydroacetic Acid with Amines: Synthesis of Trifluoromethylated 4-Pyridones and Aminoenones”, Molecules, 27:20 (2022), 7098  crossref
    12. Farihah M. Haque, Jacob S. A. Ishibashi, Claire A. L. Lidston, Huiling Shao, Frank S. Bates, Alice B. Chang, Geoffrey W. Coates, Christopher J. Cramer, Paul J. Dauenhauer, William R. Dichtel, Christopher J. Ellison, Ethan A. Gormong, Leslie S. Hamachi, Thomas R. Hoye, Mengyuan Jin, Julia A. Kalow, Hee Joong Kim, Gaurav Kumar, Christopher J. LaSalle, Stephanie Liffland, Bryce M. Lipinski, Yutong Pang, Riffat Parveen, Xiayu Peng, Yanay Popowski, Emily A. Prebihalo, Yernaidu Reddi, Theresa M. Reineke, Daylan T. Sheppard, Jeremy L. Swartz, William B. Tolman, Bess Vlaisavljevich, Jane Wissinger, Shu Xu, Marc A. Hillmyer, “Defining the Macromolecules of Tomorrow through Synergistic Sustainable Polymer Research”, Chem. Rev., 122:6 (2022), 6322  crossref
    13. Zahra Khademi, Majid M. Heravi, “Applications of Claisen condensations in total synthesis of natural products. An old reaction, a new perspective”, Tetrahedron, 103 (2022), 132573  crossref
    14. Magdy A. Ibrahim, “Chemical Reactivity of 1H-Benzimidazol-2-ylacetonitrile and Dimedone toward Simple Condensates Derived from 3-Formylchromone”, HETEROCYCLES, 104:3 (2022), 482  crossref
    15. D. V. Pryazhnikov, I. V. Kubrakova, D. I. Panyukova, T. A. Maryutina, “Surface-Modified Iron Oxide as a Sorption Material for the Extraction of Asphaltenes”, J Anal Chem, 77:5 (2022), 567  crossref
    16. V. V. Pelipko, R. I. Baichurin, K. A. Lyssenko, V. V. Dotsenko, S. V. Makarenko, “A convenient synthesis of furo[3,2-c]pyran-3-carboxylates from 3-bromo-3-nitroacrylates”, Mendeleev Commun., 32:4 (2022), 454–456  mathnet  crossref
    17. Magdy A. Ibrahim, Youssef A. Alnamer, “Synthetic Approaches for Construction of Novel 3-Heteroarylchromeno[2,3-b]pyridines and Annulated Chromenopyridopyrazolopyrimidines”, HETEROCYCLES, 102:11 (2021), 2138  crossref
    18. Bingfeng Chen, Zhenbing Xie, Fangfang Peng, Shaopeng Li, Junjuan Yang, Tianbin Wu, Honglei Fan, Zhaofu Zhang, Minqiang Hou, Shumu Li, Huizhen Liu, Buxing Han, “Production of Piperidine and δ‐Lactam Chemicals from Biomass‐Derived Triacetic Acid Lactone”, Angew Chem Int Ed, 60:26 (2021), 14405  crossref
    19. Bingfeng Chen, Zhenbing Xie, Fangfang Peng, Shaopeng Li, Junjuan Yang, Tianbin Wu, Honglei Fan, Zhaofu Zhang, Minqiang Hou, Shumu Li, Huizhen Liu, Buxing Han, “Production of Piperidine and δ‐Lactam Chemicals from Biomass‐Derived Triacetic Acid Lactone”, Angewandte Chemie, 133:26 (2021), 14526  crossref
    20. Hussnain Sajjad, Emily A. Prebihalo, William B. Tolman, Theresa M. Reineke, “Ring opening polymerization of β-acetoxy-δ-methylvalerolactone, a triacetic acid lactone derivative”, Polym. Chem., 12:46 (2021), 6724  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Mendeleev Communications
    Статистика просмотров:
    Страница аннотации:26
    PDF полного текста:6
     
      Обратная связь:
    math-net2025_03@mi-ras.ru
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2025