Аннотация:
Glass states of superfluid A-like phase of 3He in aerogel induced by random orientations of aerogel strands are investigated theoretically and experimentally. In anisotropic aerogel with stretching deformation two glass phases are observed. Both phases represent the anisotropic glass of the orbital ferromagnetic vector ^l – the orbital glass (OG). The phases differ by the spin structure: the spin nematic vector ^d can be either in the ordered spin nematic (SN) state or in the disordered spin-glass (SG) state. The first phase (OG-SN) is formed under conventional cooling from normal 3He. The second phase (OG-SG) is metastable, being obtained by cooling through the superfluid transition temperature, when large enough resonant continuous radio-frequency excitation is applied. NMR signature of different phases allows us to measure the parameter of the global anisotropy of the orbital glass induced by deformation.
Образец цитирования:
V. V. Dmitriev, D. A. Krasnikhin, N. Mulders, A. A. Senin, G. E. Volovik, A. N. Yudin, “Orbital glass and spin glass states of 3He-A in aerogel”, Письма в ЖЭТФ, 91:11 (2010), 669–675; JETP Letters, 91:11 (2010), 599–606
\RBibitem{DmiKraMul10}
\by V.~V.~Dmitriev, D.~A.~Krasnikhin, N.~Mulders, A.~A.~Senin, G.~E.~Volovik, A.~N.~Yudin
\paper Orbital glass and spin glass states of $^3$He-A in aerogel
\jour Письма в ЖЭТФ
\yr 2010
\vol 91
\issue 11
\pages 669--675
\mathnet{http://mi.mathnet.ru/jetpl738}
\transl
\jour JETP Letters
\yr 2010
\vol 91
\issue 11
\pages 599--606
\crossref{https://doi.org/10.1134/S0021364010110123}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000280648100012}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77955300094}
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/jetpl738
https://www.mathnet.ru/rus/jetpl/v91/i11/p669
Эта публикация цитируется в следующих 53 статьяx:
Rajiv G. Pereira, Ananya Janardhanan, Mustansir Barma, Phys. Rev. E, 110:1 (2024)
В. В. Дмитриев, Д. В. Петрова, А. А. Солдатов, А. Н. Юдин, УФН, 194:12 (2024), 1310–1319; V. V. Dmitriev, D. V. Petrova, A. A. Soldatov, A. N. Yudin, Phys. Usp., 67:12 (2024), 1239–1247
V. V. Dmitriev, M. S. Kutuzov, A. A. Soldatov, A. N. Yudin, Phys. Rev. B, 107:2 (2023)
J T Mäkinen, K Zhang, V B Eltsov, J. Phys.: Condens. Matter, 35:21 (2023), 214001
Volovik G.E., J. Low Temp. Phys., 202:1-2 (2021), 11–28
Lotnyk D. Eyal A. Zhelev N. Abhilash T.S. Smith E.N. Terilli M. Wilson J. Mueller E. Einzel D. Saunders J. Parpia J.M., Nat. Commun., 11:1 (2020), 4843
Volovik G.E. Zhang K., Phys. Rev. Res., 2:2 (2020), 023263
Halperin W.P., Annual Review of Condensed Matter Physics, Vol 10, Annu. Rev. Condens. Matter Phys., Annual Review of Condensed Matter Physics, 10, ed. Sachdev S. Marchetti M., Annual Reviews, 2019, 155–170
Volovik G.E. Rysti J. Maekinen J.T. Eltsov V.B., J. Low Temp. Phys., 196:1-2 (2019), 82–101
Г. Е. Воловик, УФН, 189:10 (2019), 1104–1120; G. E. Volovik, Phys. Usp., 62:10 (2019), 1031–1045
Volovik G.E., J. Exp. Theor. Phys., 129:4, SI (2019), 618–641
V. V. Dmitriev, M. S. Kutuzov, A. A. Soldatov, A. N. Yudin, Письма в ЖЭТФ, 110:11 (2019), 748–749; V. V. Dmitriev, M. S. Kutuzov, A. A. Soldatov, A. N. Yudin, JETP Letters, 110:11 (2019), 734–738