Известия Саратовского университета. Новая серия. Серия: Математика. Механика. Информатика
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив
Импакт-фактор

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Изв. Сарат. ун-та. Нов. сер. Сер.: Математика. Механика. Информатика:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Известия Саратовского университета. Новая серия. Серия: Математика. Механика. Информатика, 2023, том 23, выпуск 2, страницы 195–206
DOI: https://doi.org/10.18500/1816-9791-2023-23-2-195-206
(Mi isu978)
 

Научный отдел
Механика

Сравнение аналитического и численного решений задачи о цилиндрической оболочке с круговым отверстием под действием различных нагрузок

С. В. Каштановаa, А. В. Ржонсницкийb

a Институт проблем машиноведения Российской академии наук, Россия, 199178, г. Санкт-Петербург, Большой пр. В.О., д. 61
b Санкт-Петербургский государственный технологический институт (технический университет), Россия, 190013, г. Санкт-Петербург, Московский пр., д. 26
Список литературы:
Аннотация: Представлены результаты вычислений поля напряжений цилиндрической оболочки, ослабленной круговым отверстием и находящейся под воздействием различных нагрузок: одноосного растяжения, внутреннего давления и кручения. Шесть упрощенных уравнений теории цилиндрических оболочек с большим показателем изменяемости (совпадающие с уравнениями теории пологих оболочек) сводятся к уравнению математической физики относительно потенциала напряжений, которое решается методом Фурье. Основным препятствием к получению ответа является необходимость поиска коэффициентов в разложении решения в сумму базисных функций, при которых это решение удовлетворяет граничным условиям. Также это уравнение зависит от параметра $\beta$, ответственного за отношение между геометрическими характеристиками оболочки и отверстия. С механической точки зрения для малых и средних отверстий этот параметр имеет ограничения $\beta \leq 4$, тaк как при бо́льших значениях отверстие считается больши́м, и для описания напряженно-деформированного состояния применяются общие уравнения теории цилиндрических оболочек. При этом детальное изучение классических работ привело к пониманию того, что ни один из до сих пор предложенных методов поиска коэффициентов нельзя считать окончательно удачным, а результаты, полученные этими методами, разнятся. Среди разнообразия работ советских и западных ученых 60–70-х гг. ХХ в. выделяются численные результаты инженера Ван Дайка, которые он получил методом коллокаций. В отличие от своих современников, раскладывающих решение в ряд по малому параметру $\beta$ и оттого получающих только результаты, близкие к плоскому случаю, Ван Дайк впервые опубликовал численные результаты для всего рабочего диапазона параметра $\beta$ в рамках рассмотрения малых и средних отверстий. В данной статье предложен новый подход, основанный на разложении базисных функций в ряд Фурье. Впервые удалось составить бесконечную систему линейно независимых уравнений для нахождения неизвестных коэффициентов. Существенно, что предложенный метод, в отличие от известного метода малого параметра, не имеет математических ограничений и может применяться не только для значений параметра $\beta$, близких к нулю, а для любых значений. Ограничения вплоть до $\beta=4$ наложены механической моделью. Составлены системы для нахождения неизвестных коэффициентов при базисных функциях для трех типов нагрузок, проведено сравнение результатов, полученных авторами, с результатами, полученными численным методом. При этом если в большинстве источников приводятся только результаты вычисления окружных напряжений на границе отверстия, то в предлагаемой работе найдено поле напряжений для всей цилиндрической оболочки, возникающее ввиду наличия отверстия, в зависимости от полярных координат $(r,\theta)$.
Ключевые слова: цилиндрические оболочки, оболочки с отверстиями, растяжение, внутреннее давление, кручение, поле напряжений, аналитический подход.
Финансовая поддержка Номер гранта
Российский фонд фундаментальных исследований 19-31-60008
Работа выполнена при финансовой поддержке РФФИ (проект № 19-31-60008).
Поступила в редакцию: 21.03.2022
Принята в печать: 01.11.2022
Тип публикации: Статья
УДК: 539.31
Образец цитирования: С. В. Каштанова, А. В. Ржонсницкий, “Сравнение аналитического и численного решений задачи о цилиндрической оболочке с круговым отверстием под действием различных нагрузок”, Изв. Сарат. ун-та. Нов. сер. Сер.: Математика. Механика. Информатика, 23:2 (2023), 195–206
Цитирование в формате AMSBIB
\RBibitem{KasRzh23}
\by С.~В.~Каштанова, А.~В.~Ржонсницкий
\paper Сравнение аналитического и численного решений задачи о цилиндрической оболочке с круговым отверстием под~действием различных нагрузок
\jour Изв. Сарат. ун-та. Нов. сер. Сер.: Математика. Механика. Информатика
\yr 2023
\vol 23
\issue 2
\pages 195--206
\mathnet{http://mi.mathnet.ru/isu978}
\crossref{https://doi.org/10.18500/1816-9791-2023-23-2-195-206}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/isu978
  • https://www.mathnet.ru/rus/isu/v23/i2/p195
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Саратовского университета. Новая серия. Серия: Математика. Механика. Информатика
    Статистика просмотров:
    Страница аннотации:70
    PDF полного текста:56
    Список литературы:19
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024