|
Эта публикация цитируется в 1 научной статье (всего в 1 статье)
Научный отдел
Математика
Единственность решения начально-граничной задачи для гиперболического уравнения со смешанной производной и формула для решения
В. С. Рыхлов Саратовский национальный исследовательский государственный университет имени Н. Г. Чернышевского, Россия, 410012, г. Саратов, ул. Астраханская, д. 83
Аннотация:
Исследуется начально-граничная задача для неоднородного гиперболического уравнения второго порядка на конечном отрезке с постоянными коэффициентами и смешанной производной. Рассматривается случай закрепленных концов. Предполагается, что корни характеристического уравнения простые и лежат на вещественной оси по разные стороны от начала координат. Определяется классическое решение начально-граничной задачи. Формулируется и доказывается теорема единственности классического решения. Дается формула для решения в виде ряда, членами которого являются контурные интегралы, содержащие исходные данные задачи. Строится соответствующая спектральная задача для квадратичного пучка и формулируется теорема о разложении первой компоненты вектор-функции по производным цепочкам, соответствующим собственным функциям пучка. Эта теорема существенно используется при доказательстве теоремы единственности классического решения поставленной начально-граничной задачи.
Ключевые слова:
гиперболическое уравнение, второй порядок, постоянные коэффициенты, смешанная производная в уравнении, конечный отрезок, начально-граничная задача, закрепленные концы, классическое решение, единственность решения, формула для решения, разложение первой компоненты вектор-функции в ряд.
Поступила в редакцию: 15.04.2022 Принята в печать: 01.09.2022
Образец цитирования:
В. С. Рыхлов, “Единственность решения начально-граничной задачи для гиперболического уравнения со смешанной производной и формула для решения”, Изв. Сарат. ун-та. Нов. сер. Сер.: Математика. Механика. Информатика, 23:2 (2023), 183–194
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/isu977 https://www.mathnet.ru/rus/isu/v23/i2/p183
|
Статистика просмотров: |
Страница аннотации: | 98 | PDF полного текста: | 41 | Список литературы: | 19 |
|