Loading [MathJax]/jax/output/CommonHTML/jax.js
Известия Российской академии наук. Серия математическая
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Скоро в журнале
Архив
Импакт-фактор
Правила для авторов
Загрузить рукопись

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Изв. РАН. Сер. матем.:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Известия Российской академии наук. Серия математическая, 2023, том 87, выпуск 6, страницы 150–166
DOI: https://doi.org/10.4213/im9379
(Mi im9379)
 

Эта публикация цитируется в 4 научных статьях (всего в 4 статьях)

New approaches to glN weight system

Zhuoke Yang

International Laboratory of Cluster Geometry, National Research University ``Higher School of Economics'' (HSE), Moscow
Список литературы:
Аннотация: The present paper has been motivated by an aspiration for understanding the weight system corresponding to the Lie algebra glN. The straightforward approach to computing the values of a Lie algebra weight system on a general chord diagram amounts to elaborating calculations in the non-commutative universal enveloping algebra, in spite of the fact that the result belongs to the centre of the latter. The first approach is based on M. Kazarian's proposal to define an invariant of permutations taking values in the centre of the universal enveloping algebra of glN. The restriction of this invariant to involutions without fixed points (such an involution determines a chord diagram) coincides with the value of the glN weight system on this chord diagram. We describe the recursion allowing one to compute the glN invariant of permutations and demonstrate how it works in a number of examples. The second approach is based on the Harish-Chandra isomorphism for the Lie algebras glN. This isomorphism identifies the centre of the universal enveloping algebra glN with the ring Λ(N) of shifted symmetric polynomials in N variables. The Harish-Chandra projection can be applied separately for each monomial in the defining polynomial of the weight system; as a result, the main body of computations can be done in a commutative algebra, rather than non-commutative one.
Bibliography: 18 titles.
Ключевые слова: weight system, finite type invariants, chord diagram.
Финансовая поддержка Номер гранта
Министерство науки и высшего образования Российской Федерации 075-15-2021-608
Supported by International Laboratory of Cluster Geometry NRU HSE, RF Government grant, agreement no. 075-15-2021-608 dated 08.06.2021.
Поступило в редакцию: 16.05.2022
Исправленный вариант: 09.10.2022
Англоязычная версия:
Izvestiya: Mathematics, 2023, Volume 87, Issue 6, Pages 1255–1270
DOI: https://doi.org/10.4213/im9379e
Реферативные базы данных:
Тип публикации: Статья
УДК: 515.162.8
MSC: Primary 17B05, 17B10, 57M25, 05C75, 16T30; Secondary 57K16
Язык публикации: английский

§ 1. List of Symbols

g, , – a Lie algebra endowed with a non-degenerate invariant bilinear product;

glN – the general linear Lie algebra; consists of all N×N matrices with the commutator serving as the Lie bracket;

slN – the special linear Lie algebra; consists of all N×N trace-free matrices with the commutator serving as the Lie bracket;

d – the dimension of Lie algebra; specifically, for glN, d=N2;

D – a chord diagram;

n – the number of chords in a chord diagram;

Kn – the chord diagram with n chords any two of which intersect one another;

π – the projection to the subspace of primitive elements in the Hopf algebra of chord diagrams whose kernel is the subspace of decomposable elements;

C1,,CN – Casimir elements in U(glN);

w – a weight system;

wg – the Lie algebra weight system associated with a Lie algebra g;

¯wgwg(π()); the composition of the Lie algebra weight system wg with the projection π to the subspace of primitives;

σ – a permutation;

m – the number of permutated elements; for example, for the permutation determined by a chord diagram, m=2n;

G(σ) – the digraph of the permutation σ;

Λ(N) – the algebra of shifted symmetric polynomials in N variables;

ϕ – the Harish-Chandra projection;

p1,,pN – shifted power sum polynomials.

§ 2. Introduction

In V. A. Vassiliev’s theory of finite type knot invariants, a weight system can be associated with each such invariant. A weight system is a function on chord diagrams satisfying so-called 4-term relations.

In the opposite direction, according to a Kontsevich theorem, to each weight system taking values in a field of characteristic 0, a finite type knot invariant can be associated in a canonical way. This makes the study of weight systems an important part of knot theory.

There is a number of approaches to constructing weight systems. In particular, a huge class of weight systems can be constructed from metrized finite dimensional Lie algebras. The present paper has been motivated by an aspiration for understanding the weight system corresponding to the Lie algebra glN.

The straightforward approach to computing the values of a Lie algebra weight system on a general chord diagram amounts to elaborating calculations in the non-commutative universal enveloping algebra, in spite of the fact that the result belongs to the centre of the latter. This approach is rather inefficient even for the simplest non-commutative Lie algebra sl2, whose weight system is associated with the knot invariant known as the colored Jones polynomial. For this Lie algebra, however, there is a recurrence relation due to Chmutov and Varchenko [1], and numerous computations have been done using it, see, for example, [2]–[4]. In particular, recently, values of the sl2-weight system were computed on certain non-trivial infinite families of chord diagrams.

Much less is known about other Lie algebras; for them, explicit answers have been computed only for chord diagrams of very small order or for simple families of chord diagrams, see [5]. In particular, no recurrence similar to the Chmutov–Varchenko one exists (with the exception of the Lie superalgebra gl1|1, see [6], [7]). The goal of the present paper is to provide two new ways to compute the values of the glN weight system.

The first approach is based on M. Kazarian’s proposal to define an invariant of permutations taking values in the centre of the universal enveloping algebra of glN. The restriction of this invariant to involutions without fixed points (such an involution determines a chord diagram) coincides with the value of the glN weight system on this chord diagram. We describe the recursion allowing one to compute the glN invariant of permutations and demonstrate how it works in a number of examples.

For N<N, the centre of the universal enveloping algebra of glN is naturally embedded into that of glN, and the glN weight system is stable: its value on a permutation is a universal polynomial. The recursion we describe allows one to compute this polynomial simultaneously for all N.

The calculations of the higher homogeneous part of the universal glN weight system for some special primitive elements given by open Jacobi diagrams were the central part of the lower estimate for the dimension of the Vassiliev knot invariants in [8], [9] (see also § 14.5.4 in [10]).

The second approach is based on the Harish-Chandra isomorphism for the Lie algebras glN. This isomorphism identifies the centre of the universal enveloping algebra glN with the ring Λ(N) of shifted symmetric polynomials in N variables. The Harish-Chandra projection can be applied separately for each monomial in the defining polynomial of the weight system; as a result, the main body of computations can be done in a commutative algebra, rather than non-commutative one.

The paper is organized as follows. In § 3, we recall the construction of Lie algebra weight systems. In § 4, we describe an extension of the glN weight system to arbitrary permutations and a recursion to computing its values on permutations. In § 5, we apply, for the Lie algebras glN, the Harish-Chandra isomorphism to develop one more algorithm for computing the corresponding weight system. We compare the results with those obtained by the previous method. In § 6, we recall the Hopf algebra structure on the space of chord diagrams modulo 4-term relations, and discuss the behaviour of the glN weight system with respect to this structure.

The author is grateful to M. Kazarian and G. Olshanskii for valuable suggestions, and to S. Lando for permanent attention.

After the present paper has been submitted, the paper [11] appeared, where the constructions of the present paper are included in the general context of weight systems and graph invariants. In [12], we extend the results of the present paper to Lie superalgebras gl(m|n).

§ 3. Definition of glN weight system

Below, we use standard notions from the theory of finite order knot invariants; see, for example, [10].

A chord diagram of order n is an oriented circle (called the Wilson loop) endowed with 2n pairwise distinct points split into n disjoint pairs, considered up to orientation- preserving diffeomorphisms of the circle.

A weight system is a function w on chord diagrams satisfying the 4-term relation; see Figure 1.

In figures, the outer circle of the chord diagram is always assumed to be oriented counterclockwise. Dashed arcs may contain ends of arbitrary sets of chords, same for all the four terms in the picture.

Definition 3.1. The product of two chord diagrams D1 and D2 is defined by cutting and gluing the two circles as shown

Modulo 4-term relations, the product is well-defined, see § 4.4.3 in [10].

Given a Lie algebra g equipped with a non-degenerate invariant bilinear form, one can construct a weight system with values in the centre of its universal enveloping algebra U(g). This is the form Kontsevich [13] gave to a construction due to Bar-Natan [14]. Kontsevich’s construction proceeds as follows.

Definition 3.2 (universal Lie algebra weight system). Let g be a metrized Lie algebra over R or C, that is, a Lie algebra with an ad-invariant non-degenerate bilinear form ,. Let d denote the dimension of g. Choose a basis e1,,ed of g and let e1,,ed be the dual basis with respect to the form ,, ei,ej=δij, where δ is the Kronecker delta.

Given a chord diagram D with n chords, we first choose a base point on the circle, away from the ends of the chords of D. This gives a linear order on the endpoints of the chords, increasing in the positive direction of the Wilson loop. With each chord a we associate an index, that is, an integer-valued variable, ia. The values of ia will range from 1 to d, the dimension of the Lie algebra. We mark the first endpoint of the chord a with the symbol eia and the second endpoint with eia.

Now, write the product of all the eia and all the eia, in the order in which they appear on the Wilson loop of D, and take the sum of the dn elements of the universal enveloping algebra U(g) obtained by substituting all possible values of the indices ia into this product. Denote by wg(D) the resulting element of U(g).

Claim 3.3 (see [13]). The function wg:Dwg(D) on chord diagrams has the following properties:

1) the element wg(D) does not depend on the choice of the base point on the diagram;

2) it does not depend on the choice of the basis ei of the Lie algebra g;

3) its image belongs to the ad-invariant subspace

U(g)g={xU(g)xy=yx for all yg}=ZU(g);

4) it is multiplicative, wg(D1D2)=wg(D1)wg(D2) for any pair of chord diagrams D1, D2;

5) this map from chord diagrams to ZU(g) satisfies the 4-term relations.

Consider the Lie algebra glN of all N×N matrices. Fix the trace of the product of matrices as the preferred ad-invariant form: x,y=Tr(xy). The Lie algebra glN is linearly spanned by matrix units Eij having 1 on the intersection of ith row with jth column and 0 elsewhere, i,j=1,,N. We have Eij,Ekl=δilδjk. Therefore, the duality between glN and glN defined by , is given by the formula Eij=Eji. The commutation relations for glN have the form

[Ekl,Eji]=EklEjiEjiEkl=δljEkiδikEjl.

Now, the straightforward computation of the value of the glN weight system is as follows.

Example 3.4. For a chord diagram K1 with single chord, we have

wglN(K1)=Ni,j=1EijEji.
We denote this element by C2ZU(glN) and call the second Casimir element. Similarly, Ni=1Eii=C1, and, more generally,
Ck=Ni1,i2,,ik=1Ei1i2Ei2i3Eiki1
is the kth Casimir element in ZU(glN).

The centre ZU(glN) is isomorphic to the ring of polynomials in the Casimir elements C1,,CN: ZU(glN)=C[C1,,CN], see [15]. The higher Casimir elements CN+1,CN+2, can be represented as polynomials in C1,,CN. The value wglN(D) of the glN weight system on a chord diagram D with n chords is a polynomial in C1,,Cn.

Example 3.5. For the chord diagram, which we denote by K2, since its intersection graph is K2, the complete graph on 2 vertices, we have

Using the commutation relations (1), we obtain

wglN(K2)=Ni,j,k,l=1EijEklEjiElk=Ni,j,k,l=1EijEjiEklElk+Ni,j,k,l=1δljEijEkiElkNi,j,k,l=1δikEijEjlElk=C22+Ni,j,k=1EijEkiEjkNi,j,l=1EijEjlEli=C22+Ni,j,k=1Eij[Eki,Ejk]=C22+Ni,j,k=1δijEijEkkNi,j,k=1δkkEijEji=C22+C21NC2.

Even in this simple example, the straightforward computation involves a lot of steps. A much more efficient algorithm is suggested in the next section.

§ 4. The gl weight system for permutations

There is no recurrence relation for the weight system wglN we know about. Instead, following the suggestion by M. Kazarian, we interpret an arc diagram as an involution without fixed points on the set of its ends and extend the function wglN to arbitrary permutations of any number of permutated elements. For permutations, in contrast to chord diagrams, such a recurrence relation could be given.

For any permutation σSm, we set

wglN(σ)=Ni1,,im=1Ei1iσ(1)Ei2iσ(2)Eimiσ(m)U(glN).
We claim that

For example, the standard generator

Cm=Ni1,,im=1Ei1i2Ei2i3Eim1imEimi1
corresponds to the cyclic permutation 12m1Sm.

On the other hand, a chord diagram with n chords can be considered as an involution without fixed points on a set of m=2n elements. The value of wglN on the corresponding involution is equal to the value of the glN weight system on the corresponding chord diagram.

Example 4.1. For the chord diagram

we have

wglN(Kn)=Ni1,,i2n=1Ei1in+1Ei2in+2Eini2nEin+1i1Ein+2i2Ei2nin=wglN((1 n+1)(2 n+2)(n 2n)).

Definition 4.2 (digraph of the permutation). Let us represent a permutation as an oriented graph. The m vertices of the graph correspond to the permuted elements. They are ordered cyclically and are placed on a real line, subsequently connected with horizontal arrows looking right and numbered from left to right. The arc arrows show the action of the permutation (so that each vertex is incident with exactly one incoming and one outgoing arc edge). The digraph G(σ) of a permutation σSm consists of these m vertices and m oriented edges, for example:

Example 4.3. The digraph of the Casimir element Cm, which corresponds to the cyclic permutation 12m1Sm, is the following one:

Theorem 4.4. The value of the wglN invariant of permutations possesses the following properties:

• for an empty graph (with no vertices) the value of wglN is equal to 1, wglN()=1;

wglN is multiplicative with respect to concatenation of permutations;

• for a cyclic permutation (with the cyclic order on the set of permuted elements compatible with the permutation), the value of wglN is the standard generator, wglN(12k1)=Ck.

(the recurrence rule) for the graph of an arbitrary permutation σ in Sm, and for any two neighbouring elements k, k+1 of the permuted set {1,2,,m}, we have for the value of the wglN weight system

In the diagrams on the left, two horizontally neighbouring vertices and the edges incident to them are depicted, while on the right these two vertices are replaced with a single one; the other vertices are placed somewhere on the line and their positions are the same on all diagrams participating in the relations, but the numbers of the vertices to the right of the latter are to be decreased by 1.

In particular, for the special case σ(k+1)=k, the recurrence looks like follows:

These relations are indeed a recursion, that is, they allow one to replace the computation of wglN on a permutation with its computation on simpler permutations.

Proof. We only need to prove the recurrence rule, which is just the graphical explanation of the Lie bracket in glN,
Eikiσ(k)Eik+1iσ(k+1)Eik+1iσ(k+1)Eikiσ(k)=[Eikiσ(k),Eik+1iσ(k+1)]=δiσ(k)ik+1Eikiσ(k+1)δiσ(k+1)ikEik+1iσ(k).

In the special case, when σ(k+1)=k, we have

Eikiσ(k)Eik+1ikEik+1ikEikiσ(k)=[Eikiσ(k),Eik+1ik]=δiσ(k)ik+1EikikδikikEik+1iσ(k).
Summing from i1,,im=1 to N, we get that δiσ(k)ilEikik=C1δiσ(k)il and δikikEiliσ(k)=NEiliσ(k).

The second graph on the left-hand side corresponds to a permutation obtained from the first one by a conjugation with a transposition of two neighbouring vertices. Both graphs on the right-hand side have smaller number of vertices. Applying these relations, every graph can be reduced to a monomial in the variables Ck (a concatenation of cyclic permutations) modulo terms of smaller degrees. This provides an inductive computation of the invariant wglN. Theorem is proved.

Remark 4.5. In the situation of permutations corresponding to chord diagrams, the difference at the right-hand side of the recurrence relation represents a Jacobi diagram with a triple vertex according to the STU relation from [14], [10]. This gives a way to calculate the weight system wglN on primitive elements given by Jacobi diagrams. For some special elements, the calculations of this sort were given in [8], [9].

Corollary 4.6. The value of wglN on a permutation is well defined, it can be represented as a polynomial in N,C1,C2,, and this polynomial is universal.

Definition 4.7 (universal gl weight system on permutations). The universal gl weight system on permutation wgl is the weight system taking values in the polynomial ring C[N,C1,C2,], which satisfies wgl(σ)=wglN(σ), for all permutations σ, and is obtained by the above recurrence relations.

Example 4.8. Let us compute the value of wgl on the cyclic permutation (1 3 2) by switching the places of nodes 2 and 3:

wgl((1 3 2))=wgl((1 2 3))+C1×wgl((1))N×wgl((1 2))=C3+C21NC2.

The reader will find below a table of values of the gl weight system on chord diagrams Kn, which have n chords and each chord crosses each other; these results were obtained by computer calculation. These diagrams are chosen because computation of Lie algebra weight systems on them is extremely non-trivial, even for the Lie algebra sl2, where we know the Chmutov–Varchenko recurrence relation. In addition, these diagrams generate a Hopf subalgebra of the Hopf algebra of chord diagrams, see § 6, which allows us to compute the gl weight system on the projection of Kn to the primitive space.

Result 4.9.

wgl(K2)=NC2+C21+C22,wgl(K3)=2C2N2+(2C213C22)N+C32+3C21C2,wgl(K4)=6C2N3+(6C21+11C222C3)N2+(6C3214C21C2+6C1C22C2+2C4)N+3C414C31+6C22C21+2C218C3C1+C42+6C22,wgl(K5)=24C2N4+(24C2150C22+24C3)N3+(35C32+70C21C272C1C210C3C2+32C224C4)N2+(20C41+48C3150C22C2132C21+30C22C1+96C3C110C4282C22+10C2C4)N+C52+10C21C32+30C32+15C41C220C31C2+10C21C240C1C3C2,wgl(K6)=120C2N5+(120C21+274C22240C3)N4+(225C32404C21C2+720C1C2+174C3C2416C2+224C4)N3+(130C41480C31+375C22C2130C3C21+416C21522C22C1896C3C1+85C42+1014C2230C22C388C3174C2C4+32C5)N2+(15C52130C21C32+90C1C32552C32+30C4C22165C41C2+438C31C2492C21C2+264C1C2+696C1C3C2+64C3C272C2+30C21C4160C1C4+88C416C6)N+15C6160C51+45C22C41+150C4160C22C31120C3C31176C31+15C42C21+120C22C21+256C3C21+72C21192C22C1120C22C3C1352C3C1+96C5C1+C62+90C42+264C22+160C23240C2C4,wgl(K7)=720C2N6+(720C211764C22+2400C3)N5+(1624C32+2688C21C27200C1C22324C3C2+5264C21856C4)N4+(924C41+4800C312954C22C21+644C3C215264C21+6972C22C1+7424C3C1735C4212892C22+714C22C3+3392C3+2212C2C41088C5)N3+(175C52+1365C21C322142C1C3270C3C32+8358C32714C4C22+1540C41C26580C31C2+11736C21C210176C1C2210C21C3C28848C1C3C22792C3C2+224C5C2+3456C2644C21C4+5440C1C43392C4+544C6)N2+(210C61+1288C51735C22C414412C41+2058C22C31+2576C3C31+6784C31280C42C214704C22C218704C3C21+210C2C4C213456C21+210C42C1+8376C22C1+2856C22C3C1+13568C3C11120C2C4C13264C5C121C622212C4210680C224096C23+448C22C3+70C32C4+7432C2C4112C2C6)N+504C21C21232C31C2+1050C41C2420C51C2+105C61C2+3192C321344C1C32+700C21C32140C31C32+105C41C32+210C52+21C21C52+C725152C1C2C3+1792C21C2C3840C31C2C3280C1C32C3+1120C2C23+1344C21C41680C22C4+672C1C2C5.

Remark 4.10. The Lie algebra glN is not simple. Instead, it is a direct sum of a commutative one-dimensional Lie algebra and a simple Lie algebra slN. The one-dimensional commutative Lie subalgebra in glN consists of scalar matrices, which are C-multiples of the identity matrix. Therefore, the centre ZU(glN) of the universal enveloping algebra of glN is the tensor product of the centre of the universal enveloping algebra of C and that of slN, whence the ring of polynomials in the first Casimir C1 with coefficients in ZU(slN). Therefore, the values of the weight system wslN can be computed from that of wglN by setting C1=0. In the result, C2,C3, denote the projections of the corresponding Casimir elements in ZU(glN) to ZU(slN).

§ 5. Symmetric functions and Harish-Chandra isomorphism

In this section, we make use of the Harish-Chandra isomorphism for the Lie algebras glN to compute the corresponding weight systems.

Definition 5.1 (algebra of shifted symmetric polynomials). For a positive integer N, the algebra Λ(N) of shifted symmetric polynomials in N variables x1,x2,,xN consists of polynomials that are invariant under changes of variables

(x1,,xi,xi+1,,xN)(x1,,xi+11,xi+1,,xN),
for all i=1,,N1. Equivalently, this is the algebra of symmetric polynomials in the shifted variables (x11,x22,,xNN).

The universal enveloping algebra U(glN) of the Lie algebra glN admits the direct sum decomposition:

U(glN)=(nU(glN)+U(glN)n+)U(h),
where n and n+ are the nilpotent subalgebras of, respectively, upper and lower triangular matrices in glN, and h is the subalgebra of diagonal matrices.

Definition 5.2 (Harish-Chandra projection in U(glN)). The Harish-Chandra projection for U(glN) is the projection to the second summand in (2):

ϕ:U(glN)U(h)=C[E11,,ENN],
where E11,,ENN are the diagonal matrix units in glN; they commute with one another.

Theorem 5.3 (Harish-Chandra isomorphism [15], [16]). The Harish-Chandra projection, when restricted to the centre ZU(glN), is an algebra isomorphism to the algebra Λ(N)U(h) of shifted symmetric polynomials in E11,,ENN.

Thus, the computation of the value of the glN weight system on a chord diagram can be elaborated by applying the Harish-Chandra projection to each monomial of the polynomial. For such a monomial, the projection can be computed by moving variables Eij with i>j to the left, and/or variables Eij with i<j to the right by means of applying the commutator relations. If, in the process, we obtain monomials in nU(glN) or U(glN)n+, then we replace such a monomial with 0. A monomial in the (mutually commuting) variables Eii cannot be simplified, and its projection to U(h) coincides with itself. The resulting polynomial in E11,,ENN will be automatically shifted symmetric.

Example 5.4. Let us compute the projection of the quadratic Casimir element

C2=i,jEijEjiZU(glN)
to U(h). We have
C2=iE2ii+i<jEijEji+i>jEijEji=iE2ii+2i>jEijEji+i<j[Eij,Eji]=iE2ii+2i>jEijEji+i<j(EiiEjj).
In this expression, the first and the third summand depend on the diagonal unit elements Eii only, while the second summand is in nU(glN)+U(glN)n+, whence the image under the projection is
ϕ(C2)=iE2ii+i<j(EiiEjj)=i(E2ii+(N+12i)Eii).

Similarly to the ring of ordinary symmetric functions, the ring Λ(N) of shifted symmetric functions in N variables is isomorphic to a polynomial ring in N variables. There is a variety of convenient N-tuples of generators in Λ(N). One of them is the tuple of shifted power sum polynomials

pk=i((Eii+N+12i)k(N+12i)k).

Representing ϕ(C2) in the form

ϕ(C2)=i((Eii+N+12i)2(N+12i)2),
we see that it is just p2.

Remark 5.5. Since the Harish-Chandra isomorphism can be applied to arbitrary elements of ZU(glN), we can also apply it to the values of wgl on permutations.

For k>2, the expression for ϕ(Ck) is not reduced to just linear combinations of power sums. If fact, we have the following explicit formula, which follows from [17], § 60 in [15], and Remark 2.1.20 in [18],

1Nuk=1ϕ(Ck)uk+1=Ni=11(Eii+Ni+1)u1(Eii+Ni)u=(1Nu)exp{k=11k((1N12u)k(1N+12u)k)ukpk}.
This provides an expression for the image ϕ(Ck) of Ck as a polynomial in p1,p2,, which is valid for all N. The projections of the Casimir elements C1,,CN to U(h) can be expressed in shifted power sums p1,,pN in the following way:
ϕ(C1)=p1,ϕ(C2)=p2,ϕ(C3)=14N2p1+Np22+p14+p3p212,ϕ(C4)=14N3p1+N(p212+p14+p3)p1p2+p22+p4,

Computations using the Harish-Chandra isomorphism are also elaborative, and the results they produce are not universal, they depend on N. It is more efficient, therefore, to substitute the known values ϕ(Ck) into the answers obtained by the previous method.

For the values of the gl weight system on the chord diagrams Kn, this yields the following result.

Result 5.6.

wgl(K2)=Np2+p21+p22,wgl(K3)=2N2p2+N(2p213p22)+p32+3p21p2,wgl(K4)=7N3p2+N2(8p21+11p22)+N(6p3214p21p2p2+2p4)+3p41+6p22p218p3p1+p42+6p22,wgl(K5)=36N4p2+N3(48p2155p22)+N2(35p32+80p21p2+20p2)+N(20p4150p22p218p2110p4277p22+10p2p424p4)+p52+10p21p32+30p32+15p41p240p1p3p2+96p1p3,wgl(K6)=243N5p2+N4(376p21+361p22)+N3(240p32593p21p2334p2+252p4)+N2(160p41+405p22p21+232p211088p3p1+85p42+999p22174p2p4)+N(15p52130p21p32537p32+30p4p22165p41p2159p21p2+696p1p3p231p2+30p21p4+68p416p6)+15p61+45p22p41+48p41120p3p31+15p42p21+90p22p21120p22p3p1192p3p1+96p5p1+p62+90p42+144p22+160p23240p2p4,wgl(K7)=2022N6p2+N5(3580p212947p22)+N4(1981p32+5446p21p2+5556p22808p4)+N3(1568p413773p22p215336p21+13280p3p1770p4214108p22+2408p2p4)+N2(175p52+1435p21p32+8505p32714p4p22+1750p41p2+5258p21p210192p1p3p2+1862p2644p21p42712p4+544p6)+N(210p61735p22p411656p41+2576p3p31280p42p212877p22p21+210p2p4p21524p21+2856p22p3p1+8800p3p13264p5p121p622177p426985p224096p23+70p32p4+7292p2p4112p2p6)+p72+21p21p52+210p52+105p41p32+630p21p32280p1p3p32+2352p321680p4p22+105p61p2+336p41p2+1120p23p2840p31p3p24032p1p3p2+672p1p5p2+1344p21p4.

§ 6. Hopf algebra structure and projection to primitives

Multiplicative weight systems often become simpler when restricted to primitive elements in the Hopf algebra of chord diagrams. This is true, in particular, for the weight systems associated with metrized Lie algebras. The degree of the value of such a weight system wg on a chord diagram with n chords is 2n, while for the projection of the chord diagram to primitives, it is at most n, see [1]. In many cases, knowing the value of a weight system on projections to primitives allows one to understand its structure.

In this section, we recall the Hopf algebra structure on the algebra of chord diagrams modulo 4-term relations, and discuss the values of wgl on projections of chord diagrams to primitives.

Definition 6.1. The coproduct Δ of a chord diagram D is defined by

Δ(D):=J[D]DJD¯J,
where the summation is taken over all subsets J of the set [D] of chords of D. Here DJ is the chord subdiagram of D consisting of the chords that belong to J and ¯J=[D]J is the complementary subset of chords.

Claim 6.2. The algebra of chord diagrams modulo 4-term relations endowed with the above coproduct is a graded commutative, cocommutative and connected Hopf algebra.

Definition 6.3. An element p of a Hopf algebra is called primitive if Δ(p)=1p+p1.

The Milnor–Moore theorem, when applied to the Hopf algebra of chord diagrams, asserts that this Hopf algebra admits a decomposition into the direct sum of the subspace of primitive elements and the subspace of decomposable elements (polynomials in primitive elements of smaller degree). There exists, therefore, a natural projection from the space of chord diagrams to the subspace of primitive elements, whose kernel is the subspace of decomposable elements. We denote this projection by π.

Theorem 6.4 (see [19], [20]). The projection π(D) of a chord diagram D to the subspace of primitive elements is given by the formula

π(D)=D1![D1][D2]=[D]D1D2+2![D1][D2][D3]=[D]D1D2D3=D|[D]|i=2(1)i(i1)!ij=1[Dj]=[D][Dj]ij=1Dj,
where the sum is taken over all unordered splittings of the set of chords of D into 2, 3, etc., non-empty subsets.

In particular, the chord diagrams Kn generate a graded Hopf subalgebra in the Hopf algebra of chord diagrams (since any chord subdiagram of Kn is Kk, for some k). Rewriting the formula for the projection for the exponential generating series 1+n=1Knxn/n! we obtain the following corollary.

Corollary 6.5. The generating series for the projections π(Kn) to the subspace of primitive elements is given by the formula

n=1π(Kn)xnn!=log(1+n=1Knxnn!).

Now, knowing the values of the gl weight system on the diagrams Kn for n=1,2,,7, we easily obtain the values ¯wgl=wglπ on their projections to primitives.

Result 6.6.

¯wgl(K2)=NC2+C21,¯wgl(K3)=2N2C22NC21,¯wgl(K4)=6C2N3+(6C212C3)N2+(6C1C22C2+2C4)N4C31+2C21+6C228C1C3,¯wgl(K5)=24C2N4+(24C324C21)N3+(72C1C2+32C224C4)N2+(48C3132C21+96C3C172C22)N,¯wgl(K6)=120C2N5+(120C21240C3)N4+(720C1C2416C2+224C4)N3+(480C31+416C21896C3C1+792C2288C3+32C5)N2+(240C2C21+264C2C1160C4C172C2+64C2C3+88C416C6)N+120C41176C31+72C21192C1C22+264C22+160C23+256C21C3352C1C3240C2C4+96C1C5,¯wgl(K7)=720C2N6+(2400C3720C21)N5+(7200C1C2+5264C21856C4)N4+(4800C315264C21+7424C3C19168C22+3392C31088C5)N3+(7200C2C2110176C2C1+5440C4C1+3456C22176C2C33392C4+544C6)N2+(3600C41+6784C318704C3C213456C21+6528C22C1+13568C3C13264C5C110176C224096C23+6816C2C4)N+1344C322688C1C2C3+1344C21C4.

In the basis p1,p2, of shifted power series, these formulas look simpler.

Result 6.7.

¯wgl(K2)=Np2+p21,¯wgl(K3)=2N2p22Np21,¯wgl(K4)=7N3p2+8N2p21+N(2p4p2)+6p228p1p3,¯wgl(K5)=36N4p248N3p21+20N2p2+N(8p2172p2224p4)+96p1p3,¯wgl(K6)=243N5p2+376N4p21+N3(252p4334p2)+N2(232p211088p3p1+864p22)+N(96p2p2131p2+68p416p6)+48p41+144p22+160p23192p1p3240p2p4+96p1p5,¯wgl(K7)=2022N6p23580N5p21+N4(5556p22808p4)+N3(5336p21+13280p3p111280p22)+N2(2976p2p21+1862p22712p4+544p6)+N(1488p41524p21+8800p3p13264p5p16768p224096p23+6816p2p4)+1344p322688p1p2p3+1344p21p4.

Список литературы

1. S. V. Chmutov, A. N. Varchenko, “Remarks on the Vassiliev knot invariants coming from sl2”, Topology, 36:1 (1997), 153–178  crossref  mathscinet  zmath
2. П. А. Филиппова, “Значения весовой системы, отвечающей алгебре Ли sl2, на полных двудольных графах”, Функц. анализ и его прил., 54:3 (2020), 73–93  mathnet  crossref  mathscinet  zmath; англ. пер.: P. A. Filippova, “Values of the sl2 weight system on complete bipartite graphs”, Funct. Anal. Appl., 54:3 (2020), 208–223  crossref
3. П. А. Филиппова, “Значения sl2-весовой системы на семействе графов, не являющихся графами пересечений хордовых диаграмм”, Матем. сб., 213:2 (2022), 115–148  mathnet  crossref  mathscinet  zmath; англ. пер.: P. A. Filippova, “Values of the sl2 weight system on a family of graphs that are not the intersection graphs of chord diagrams”, Sb. Math., 213:2 (2022), 235–267  crossref  adsnasa
4. П. Е. Закорко, “Значения sl2-весовой системы на хордовых диаграммах с полным графом пересечений”, Матем. сб., 214:7 (2023), 42–59  mathnet  crossref
5. Zhuoke Yang, On values of sl3 weight system on chord diagrams whose intersection graph is complete bipartite, arXiv: 2102.00888
6. J. M. Figueroa-O'Farrill, T. Kimura, A. Vaintrob, “The universal Vassiliev invariant for the Lie superalgebra gl(1|1)”, Comm. Math. Phys., 185:1 (1997), 93–127  crossref  mathscinet  zmath  adsnasa
7. S. V. Chmutov, S. K. Lando, “Mutant knots and intersection graphs”, Algebr. Geom. Topol., 7:3 (2007), 1579–1598  crossref  mathscinet  zmath
8. S. Chmutov, S. Duzhin, “A lower bound for the number of Vassiliev knot invariants”, Topology Appl., 92:3 (1999), 201–223  crossref  mathscinet  zmath
9. O. T. Dasbach, “On the combinatorial structure of primitive Vassiliev invariants. III. A lower bound”, Commun. Contemp. Math., 2:4 (2000), 579–590  crossref  mathscinet  zmath
10. S. Chmutov, S. Duzhin, J. Mostovoy, Introduction to Vassiliev knot invariants, Cambridge Univ. Press, Cambridge, 2012, xvi+504 pp.  crossref  mathscinet  zmath
11. М. Э. Казарян, С. К. Ландо, “Весовые системы и инварианты графов и вложенных графов”, УМН, 77:5(467) (2022), 131–184  mathnet  crossref  mathscinet  zmath; англ. пер.: M. E. Kazarian, S. K. Lando, “Weight systems and invariants of graphs and embedded graphs”, Russian Math. Surveys, 77:5 (2022), 893–942  crossref
12. Zhuoke Yang, “On the Lie superalgebra gl(m|n) weight system”, J. Geom. Phys., 187 (2023), 104808, 11 pp.  crossref  mathscinet  zmath
13. M. Kontsevich, “Vassiliev's knot invariants”, I. M. Gel'fand seminar, Part 2, Adv. Soviet Math., 16, Part 2, Amer. Math. Soc., Providence, RI, 1993, 137–150  crossref  mathscinet  zmath
14. D. Bar-Natan, “On the Vassiliev knot invariants”, Topology, 34:2 (1995), 423–472  crossref  mathscinet  zmath
15. Д. П. Желобенко, Компактные группы Ли и их представления, Наука, М., 1970, 664 с.  mathscinet  zmath; англ. пер.: D. P. Želobenko, Compact Lie groups and their representations, Transl. Math. Monogr., 40, Amer. Math. Soc., Providence, RI, 1973, viii+448 с.  crossref  mathscinet  zmath
16. А. Окуньков, Г. Ольшанский, “Сдвинутые функции Шура”, Алгебра и анализ, 9:2 (1997), 73–146  mathnet  mathscinet  zmath; англ. пер.: A. Okounkov, G. Olshanskii, “Shifted Schur functions”, St. Petersburg Math. J., 9:2 (1998), 239–300
17. А. М. Переломов, В. С. Попов, “Операторы Казимира для полупростых групп Ли”, Изв. АН СССР. Сер. матем., 32:6 (1968), 1368–1390  mathnet  mathscinet  zmath; англ. пер.: A. M. Perelomov, V. S. Popov, “Casimir operators for semisimple Lie groups”, Math. USSR-Izv., 2:6 (1968), 1313–1335  crossref  adsnasa
18. G. I. Olshanskii, “Representations of infinite-dimensional classical groups, limits of enveloping algebras, and Yangians”, Topics in representation theory, Adv. Soviet Math., 2, Amer. Math. Soc., Providence, RI, 1991, 1–66  crossref  mathscinet  zmath
19. S. K. Lando, “On a Hopf algebra in graph theory”, J. Combin. Theory Ser. B, 80:1 (2000), 104–121  crossref  mathscinet  zmath
20. W. R. Schmitt, “Incidence Hopf algebras”, J. Pure Appl. Algebra, 96:3 (1994), 299–330  crossref  mathscinet  zmath

Образец цитирования: Zhuoke Yang, “New approaches to glN weight system”, Изв. РАН. Сер. матем., 87:6 (2023), 150–166; Izv. Math., 87:6 (2023), 1255–1270
Цитирование в формате AMSBIB
\RBibitem{Yan23}
\by Zhuoke Yang
\paper New approaches to $\mathfrak{gl}_N$ weight system
\jour Изв. РАН. Сер. матем.
\yr 2023
\vol 87
\issue 6
\pages 150--166
\mathnet{http://mi.mathnet.ru/im9379}
\crossref{https://doi.org/10.4213/im9379}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4700022}
\zmath{https://zbmath.org/?q=an:07794518}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2023IzMat..87.1255Y}
\transl
\jour Izv. Math.
\yr 2023
\vol 87
\issue 6
\pages 1255--1270
\crossref{https://doi.org/10.4213/im9379e}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=001146044700007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85180669755}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/im9379
  • https://doi.org/10.4213/im9379
  • https://www.mathnet.ru/rus/im/v87/i6/p150
  • Эта публикация цитируется в следующих 4 статьяx:
    1. N. Kodaneva, S. Lando, “Polynomial graph invariants induced from the gl-weight system”, Journal of Geometry and Physics, 2025, 105421  crossref
    2. Надежда Коданева, “Многочлен переплетений бинарных дельта-матроидов и инварианты зацеплений”, Функц. анализ и его прил., 59:1 (2025), 29–45  mathnet  crossref; Nadezhda Kodaneva, “The interlace polynomial of binary delta-matroids and link invariants”, Funct. Anal. Appl., 59:1 (2025), 21–33  crossref
    3. М. Ненашева, “Об изопериодическом слоении в страте коразмерности один в пространстве вещественно-нормированных дифференциалов”, Алгебра и анализ, 36:2 (2024), 93–107  mathnet
    4. Zhuoke Yang, “On values of sl3 weight system on chord diagrams whose intersection graph is complete bipartite”, Mosc. Math. J., 24:1 (2024), 125–140  mathnet
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Статистика просмотров:
    Страница аннотации:511
    PDF русской версии:13
    PDF английской версии:65
    HTML русской версии:68
    HTML английской версии:282
    Список литературы:97
    Первая страница:5
     
      Обратная связь:
    math-net2025_04@mi-ras.ru
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2025