Аннотация:
Решена смешанная краевая задача с произвольными непрерывными, необязательно удовлетворяющими граничным условиям, функциями в начальных условиях и неоднородности уравнения. Предложен метод нахождения обобщенного решения с помощью модификации операторов интерполирования функций, построенных с помощью решений задач Коши с дифференциальным выражением второго порядка. Найдены способы нахождения коэффициентов Фурье вспомогательных функций с помощью интеграла Стилтьеса или резольвенты дифференциального оператора Коши третьего порядка.
Библиография: 39 наименований.
Ключевые слова:краевая задача, обобщенное решение, метод разделения переменных.
Поступило в редакцию: 10.04.2022 Исправленный вариант: 20.10.2022
Образец цитирования:
А. Ю. Трынин, “Об одном методе решения смешанной краевой задачи для уравнения гиперболического типа с помощью операторов $\mathbb{AT}_{\lambda,j}$”, Изв. РАН. Сер. матем., 87:6 (2023), 121–149; Izv. Math., 87:6 (2023), 1227–1254