Loading [MathJax]/jax/output/SVG/config.js
Функциональный анализ и его приложения
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Скоро в журнале
Архив
Импакт-фактор
Правила для авторов
Загрузить рукопись

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Функц. анализ и его прил.:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Функциональный анализ и его приложения, 2011, том 45, выпуск 3, страницы 41–54
DOI: https://doi.org/10.4213/faa3045
(Mi faa3045)
 

Эта публикация цитируется в 24 научных статьях (всего в 24 статьях)

Захват фазы для уравнений, описывающих резистивную модель джозефсоновского перехода, и их возмущений

Ю. С. Ильяшенкоabcd, Д. А. Рыжовe, Д. А. Филимоновf

a Московский государственный университет
b Независимый московский университет
c Математический институт им. В. А. Стеклова
d Корнельский университет, США
e Санкт-Петербургский государственный университет, лаборатория им. П. Л. Чебышева
f Московский государственный университет путей сообщения
Список литературы:
Аннотация: В работе исследуются динамические системы на торе, моделирующие явление Джозефсона в физике сверхпроводников, а также возмущения этих систем. Показано, что в семействе уравнений, описывающих резистивную модель джозефсоновского перехода, захват фазы происходит только при целых числах вращения, и предложен простой способ вычисления границ соответствующих языков Арнольда. Эта часть представляет собой упрощение уже известных результатов о так называемом квантовании числа вращения [4]. Кроме того, мы показываем, что квантование числа вращения только в целых точках представляет собой явление коразмерности бесконечность. А именно, бесконечное множество независимых возмущений порождает счетное число зон захвата фазы, расположенных недискретно.
Ключевые слова: дифференциальные уравнения на торе, теория возмущений, эффект Джозефсона, захват фазы, квантование числа вращения, языки Арнольда.
Поступило в редакцию: 03.12.2010
Англоязычная версия:
Functional Analysis and Its Applications, 2011, Volume 45, Issue 3, Pages 192–203
DOI: https://doi.org/10.1007/s10688-011-0023-8
Реферативные базы данных:
Тип публикации: Статья
УДК: 517.923+517.925.54
Образец цитирования: Ю. С. Ильяшенко, Д. А. Рыжов, Д. А. Филимонов, “Захват фазы для уравнений, описывающих резистивную модель джозефсоновского перехода, и их возмущений”, Функц. анализ и его прил., 45:3 (2011), 41–54; Funct. Anal. Appl., 45:3 (2011), 192–203
Цитирование в формате AMSBIB
\RBibitem{IlyRyzFil11}
\by Ю.~С.~Ильяшенко, Д.~А.~Рыжов, Д.~А.~Филимонов
\paper Захват фазы для уравнений, описывающих резистивную модель джозефсоновского перехода, и их возмущений
\jour Функц. анализ и его прил.
\yr 2011
\vol 45
\issue 3
\pages 41--54
\mathnet{http://mi.mathnet.ru/faa3045}
\crossref{https://doi.org/10.4213/faa3045}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2883238}
\zmath{https://zbmath.org/?q=an:1271.34052}
\elib{https://elibrary.ru/item.asp?id=20730626}
\transl
\jour Funct. Anal. Appl.
\yr 2011
\vol 45
\issue 3
\pages 192--203
\crossref{https://doi.org/10.1007/s10688-011-0023-8}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000298226200004}
\elib{https://elibrary.ru/item.asp?id=18008005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-80053482678}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/faa3045
  • https://doi.org/10.4213/faa3045
  • https://www.mathnet.ru/rus/faa/v45/i3/p41
  • Эта публикация цитируется в следующих 24 статьяx:
    1. А. А. Глуцюк, “О расширенной модели перехода Джозефсона, линейных системах с полиномиальными решениями, детерминантных поверхностях и уравнениях Пенлеве III”, Топология, геометрия, комбинаторика и математическая физика, Сборник статей. К 80-летию члена-корреспондента РАН Виктора Матвеевича Бухштабера, Труды МИАН, 326, МИАН, М., 2024, 101–147  mathnet  crossref; Alexey A. Glutsyuk, “Extended Model of Josephson Junction, Linear Systems with Polynomial Solutions, Determinantal Surfaces, and Painlevé III Equations”, Proc. Steklov Inst. Math., 326 (2024), 90–132  crossref
    2. Alexey Glutsyuk, “On germs of constriction curves in model of overdamped Josephson junction, dynamical isomonodromic foliation and Painlevé 3 equation”, Mosc. Math. J., 23:4 (2023), 479–513  mathnet
    3. Y Bibilo, A A Glutsyuk, “On families of constrictions in model of overdamped Josephson junction and Painlevé 3 equation*”, Nonlinearity, 35:10 (2022), 5427  crossref
    4. Julian M. I. Newman, Maxime Lucas, Aneta Stefanovska, Understanding Complex Systems, Physics of Biological Oscillators, 2021, 111  crossref
    5. J. Newman, M. Lucas, A. Stefanovska, “Stabilization of cyclic processes by slowly varying forcing”, Chaos: An Interdisciplinary Journal of Nonlinear Science, 31:12 (2021)  crossref
    6. Glutsyuk A.A. Netay I.V., “On Spectral Curves and Complexified Boundaries of the Phase-Lock Areas in a Model of Josephson Junction”, J. Dyn. Control Syst., 26:4 (2020), 785–820  crossref  mathscinet  isi
    7. Chen Chris Gong, Ralf Toenjes, Arkady Pikovsky, “Coupled Möbius maps as a tool to model Kuramoto phase synchronization”, Phys. Rev. E, 102:2 (2020)  crossref
    8. Ivan A Bizyaev, Ivan S Mamaev, “Dynamics of the nonholonomic Suslov problem under periodic control: unbounded speedup and strange attractors”, J. Phys. A: Math. Theor., 53:18 (2020), 185701  crossref
    9. Borisov A. Mamaev I., “Rigid Body Dynamics”, Rigid Body Dynamics, de Gruyter Studies in Mathematical Physics, 52, Walter de Gruyter Gmbh, 2019, 1–520  mathscinet  isi
    10. С. И. Тертычный, “О монодромии пространства решений специального дважды конфлюэнтного уравнения Гойна и ее приложениях”, ТМФ, 201:1 (2019), 17–36  mathnet  crossref  mathscinet  adsnasa; S. I. Tertychnyi, “Solution space monodromy of a special double confluent Heun equation and its applications”, Theoret. and Math. Phys., 201:1 (2019), 1426–1441  crossref  isi  elib
    11. A. A. Glutsyuk, “On Constrictions of Phase-Lock Areas in Model of Overdamped Josephson Effect and Transition Matrix of the Double-Confluent Heun Equation”, J Dyn Control Syst, 25:3 (2019), 323  crossref
    12. Xu C., Boccaletti S., Guan Sh., Zheng Zh., “Origin of Bellerophon States in Globally Coupled Phase Oscillators”, Phys. Rev. E, 98:5 (2018), 050202  crossref  mathscinet  isi
    13. В. М. Бухштабер, А. А. Глуцюк, “Собственные функции монодромии уравнений Гойна и границы зон фазового захвата в модели сильношунтированного эффекта Джозефсона”, Порядок и хаос в динамических системах, Сборник статей. К 80-летию со дня рождения академика Дмитрия Викторовича Аносова, Труды МИАН, 297, МАИК «Наука/Интерпериодика», М., 2017, 62–104  mathnet  crossref  mathscinet  elib; V. M. Buchstaber, A. A. Glutsyuk, “On monodromy eigenfunctions of Heun equations and boundaries of phase-lock areas in a model of overdamped Josephson effect”, Proc. Steklov Inst. Math., 297 (2017), 50–89  crossref  isi
    14. Glutsyuk A., Rybnikov L., “On Families of Differential Equations on Two-Torus With All Phase-Lock Areas”, Nonlinearity, 30:1 (2017), 61–72  crossref  mathscinet  zmath  isi  scopus
    15. И. А. Бизяев, А. В. Борисов, И. С. Мамаев, “Случай Гесса–Аппельрота и квантование числа вращения”, Нелинейная динам., 13:3 (2017), 433–452  mathnet  crossref  mathscinet  elib
    16. Ivan A. Bizyaev, Alexey V. Borisov, Ivan S. Mamaev, “The Hess–Appelrot Case and Quantization of the Rotation Number”, Regul. Chaotic Dyn., 22:2 (2017), 180–196  mathnet  crossref  mathscinet  zmath
    17. Buchstaber V.M. Glutsyuk A.A., “On determinants of modified Bessel functions and entire solutions of double confluent Heun equations”, Nonlinearity, 29:12 (2016), 3857–3870  crossref  mathscinet  zmath  isi  elib  scopus
    18. В. М. Бухштабер, С. И. Тертычный, “Голоморфные решения дважды конфлюентного уравнения Гойна, ассоциированного с RSJ-моделью перехода Джозефсона”, ТМФ, 182:3 (2015), 373–404  mathnet  crossref  mathscinet  adsnasa  elib; V. M. Buchstaber, S. I. Tertychnyi, “Holomorphic solutions of the double confluent Heun equation associated with the RSJ model of the Josephson junction”, Theoret. and Math. Phys., 182:3 (2015), 329–355  crossref  isi  elib
    19. A. Klimenko, O. Romaskevich, “Asymptotic properties of Arnold tongues and Josephson effect”, Mosc. Math. J., 14:2 (2014), 367–384  mathnet  crossref  mathscinet
    20. А. А. Глуцюк, В. А. Клепцын, Д. А. Филимонов, И. В. Щуров, “О квантовании перемычек в уравнении, моделирующем эффект Джозефсона”, Функц. анализ и его прил., 48:4 (2014), 47–64  mathnet  crossref  mathscinet  zmath  elib; A. A. Glutsyuk, V. A. Kleptsyn, D. A. Filimonov, I. V. Shchurov, “On the Adjacency Quantization in an Equation Modeling the Josephson Effect”, Funct. Anal. Appl., 48:4 (2014), 272–285  crossref  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
    Статистика просмотров:
    Страница аннотации:956
    PDF полного текста:317
    Список литературы:101
    Первая страница:26
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2025