Аннотация:
В работе продолжено рассмотрение нового класса рядово Дирихле — дзета-функции моноидов натуральных чисел. Основной задачей, решаемой в данной статье, является построение моноида натуральных чисел, для которого дзета-функция этого моноида имеет заданную абсциссу абсолютной сходимости.
Ранее автор решил аналогичную задачу построения множества натуральных чисел, для которого соответствующая дзета-функция имеет заданную абсциссу абсолютной сходимости.
Для решения задачи для дзета-функции моноида натуральных чисел возникают определенные трудности, связанные с необходимостью построения последовательности простых чисел, удовлетворяющих определенным требованиям на рост членов.
Было введено понятие $\sigma$-последовательности $\mathbb{P}_\sigma$ простых чисел, члены которой удовлетворяют неравенству $n^\sigma\le p_n<(n+1)^\sigma.$ С помощью теоремы Ингама с кубическим ростом простых чисел удалось построить $\sigma$-последовательность простых чисел для любого $\sigma\ge3$. Для соответствующей дзета-функции моноида, порожденного данной $\sigma$-последовательностью простых, абсцисса абсолютной сходимости равна $\frac{1}{\sigma}$. Таким образом, с помощью теоремы Ингама удалось решить проблему для значений абсциссы абсолютной сходимости от $0$ до $\frac{1}{3}$. Для таких моноидов удается получить асимптотическую формулу для функции распределения простых чисел $\pi_{\mathbb{P}_\sigma}(x)$: $\pi_{\mathbb{P}_\sigma}(x)=x^{\frac{1}{\sigma}}+\theta(x)$, где $-2<\theta(x)<-1$.
Для доказательства существования моноида натуральных чисел, для дзета-функции которого значение абсциссы абсолютной сходимости от $\frac{1}{3}$ до 1, потребовалось использовать теорему Россера о простых числах. Для этого было введено понятие $\sigma$-последовательности второго рода.
В заключении рассмотрены актуальные задачи с дзета-функциями моноидов натуральных чисел, требующие дальнейшего исследования.