|
Эта публикация цитируется в 11 научных статьях (всего в 11 статьях)
О количестве простых элементов в некоторых моноидах натуральных чисел
Н. Н. Добровольскийa, А. О. Калининаb, М. Н. Добровольскийc, Н. М. Добровольскийd a Тульский государственный университет
b Московский государственный университет имени М. В. Ломоносова, механико-математический факультет
c Геофизический центр РАН, г. Москва
d Тульский государственный педагогический университет им. Л. Н. Толстого
Аннотация:
В работе исследуется вопрос о числе простых элементов в моноиде $M_{q,1}$, состоящем из натуральных чисел сравнимых с $1$ по модулю $q$. При $q>2$ моноид $M_{q,1}$ не является моноидом с однозначным разложением на простые элементы, так как наряду с обычными простыми числами, которые сравнимы с $1$ по модулю $q$, в число простых элементов попадают псевдопростые числа, которые являются составными числами. Случай $q=3,4,6$ выделяется из числа других тем, что псевдопростые числа являются произведением двух простых чисел сравнимых с $q-1$ по модулю $q$. Таким образом, для множества простых элементов $P(M_{q,1})$ моноида $M_{q,1}$ в этом случае справедливо равенство $P(M_{q,1})=\mathbb{P}_{q,1}\bigcup(\mathbb{P}_{q,q-1}\cdot\mathbb{P}_{q,q-1})$.
Так как моноид $M_{q,1}$ не имеет однозначности разложения на простые элементы, то дзета-функция
$$
\zeta(M_{q,1}|\alpha)=\sum_{n\in M_{q,1}}\frac{1}{n^\alpha}
$$
моноида $M_{q,1}$ не равна эйлерову произведению
$$
P(M_{q,1}|\alpha)=\prod_{r\in P(M_{q,1})}\left(1-\frac{1}{r^\alpha}\right)^{-1}.
$$
Поэтому, изучение распределения простых элементов в моноиде $M_{q,1}$ с помощью аналитических свойств логарифмической производной дзета-функции моноида не представляется возможным.
Для полноты изложения сначала в работе изучается вопрос о количестве составных чисел, равных произведению двух простых чисел, с помощью неравенств Чебышёва, так как в этом году исполнилось 170 лет со дня выхода первого мемуара П. Л. Чебышёва о простых числах.
Затем с помощью неравенства Бруна-Титчмарша получена верхняя оценка количества составных чисел сравнимых с $1$ по модулю $q$ и равных произведению двух простых чисел.
Подход, применённый к общему случаю, затем переносится на случай простых элементов в моноидах $M_{q,1}$ при $q=3,4,6$.
В заключение рассмотрены актуальные задачи с дзета-функциями моноидов натуральных чисел, требующие дальнейшего исследования.
Ключевые слова:
дзета-функция Римана, ряд Дирихле, дзета-функция моноида натуральных чисел, эйлерово произведение.
Образец цитирования:
Н. Н. Добровольский, А. О. Калинина, М. Н. Добровольский, Н. М. Добровольский, “О количестве простых элементов в некоторых моноидах натуральных чисел”, Чебышевский сб., 19:2 (2018), 123–141
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/cheb644 https://www.mathnet.ru/rus/cheb/v19/i2/p123
|
Статистика просмотров: |
Страница аннотации: | 183 | PDF полного текста: | 61 | Список литературы: | 26 |
|