|
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, 2014, номер 3, страницы 38–48
(Mi basm368)
|
|
|
|
Equivalence of pairs of matrices with relatively prime determinants over quadratic rings of principal ideals
Natalija Ladzoryshyn, Vasyl' Petrychkovych Pidstryhach Institute for Applied Problems of Mechanics and Mathematics of the NAS of Ukraine, 3b Naukova Str., 79060, L'viv, Ukraine
Аннотация:
A special equivalence of matrices and their pairs over quadratic rings is investigated. It is established that for the pair of $n\times n$ matrices $A,B$ over the quadratic rings of principal ideals $\mathbb Z[\sqrt k]$, where $(\operatorname{det}A,\operatorname{det}B)=1$, there exist invertible matrices $U\in GL(n,\mathbb Z)$ and $V^A,V^B\in GL(n,\mathbb Z[\sqrt k])$ such that $UAV^A=T^A$ and $UBV^B=T^B$ are the lower triangular matrices with invariant factors on the main diagonals.
Ключевые слова и фразы:
quadratic ring, matrices over quadratic rings, equivalence of pairs of matrices.
Поступила в редакцию: 30.05.2014
Образец цитирования:
Natalija Ladzoryshyn, Vasyl' Petrychkovych, “Equivalence of pairs of matrices with relatively prime determinants over quadratic rings of principal ideals”, Bul. Acad. Ştiinţe Repub. Mold. Mat., 2014, no. 3, 38–48
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/basm368 https://www.mathnet.ru/rus/basm/y2014/i3/p38
|
|