|
Algebra and Discrete Mathematics, 2013, том 16, выпуск 1, страницы 42–60
(Mi adm433)
|
|
|
|
RESEARCH ARTICLE
Labelling matrices and index matrices of a graph structure
T. Dinesha, T. V. Ramakrishnanb a Department of Mathematics, Nehru Arts and Science College,
Padannakkad P.O., Kasaragod District - 671 314, Kerala, India
b Department of Mathematics, S.E.S. College, Sreekandapuram, Kannur District - 670 631, Kerala, India
Аннотация:
The concept of graph structure was introduced by E. Sampathkumar in 'Generalised Graph Structures', Bull. The concept of graph structure was introduced by E. Sampathkumar in 'Generalised Graph Structures', Bull. Kerala Math. Assoc., Vol. 3, No. 2, Dec 2006, 65-123. Based on the works of Brouwer, Doob and Stewart, R.H. Jeurissen has ('The Incidence Matrix and Labelings of a Graph', J. Combin. Theory, Ser. B30 (1981), 290-301) proved that the collection of all admissible index vectors and the collection of all labellings for $0$ form free $F$-modules ($F$ is a commutative ring). We have obtained similar results on graph structures in a previous paper. In the present paper, we introduce labelling matrices and index matrices of graph structures and prove that the collection of all admissible index matrices and the collection of all labelling matrices for $0$ form free $F$-modules. We also find their ranks in various cases of bipartition and char $F$ (equal to 2 and not equal to 2).
Ключевые слова:
Graph structure, $R_{i}$-labelling, $R_{i}$-index vector, admissible $R_{i}$-index vector, labelling matrix, index matrix, admissible index matrix.
Поступила в редакцию: 25.07.2011 Исправленный вариант: 29.05.2012
Образец цитирования:
T. Dinesh, T. V. Ramakrishnan, “Labelling matrices and index matrices of a graph structure”, Algebra Discrete Math., 16:1 (2013), 42–60
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/adm433 https://www.mathnet.ru/rus/adm/v16/i1/p42
|
|