Аннотация:
The asymptotic behavior of large eigenvalues is studied for the two-photon quantum Rabi model with a finite bias. It is proved that the spectrum of this Hamiltonian model consists of two eigenvalue sequences {E+n}∞n=0, {E−n}∞n=0, and their large n asymptotic behavior with error term O(n−1/2) is described. The principal tool is the method of near-similarity of operators introduced by G. V. Rozenbljum and developed in works of J. Janas, S. Naboko, and E. A. Yanovich (Tur).
Образец цитирования:
A. Boutet de Monvel, M. Charif, L. Zielinski, “Behavior of large eigenvalues for the two-photon asymmetric quantum Rabi model”, Алгебра и анализ, 35:1 (2023), 80–108; St. Petersburg Math. J., 35:1 (2024), 61–82
\RBibitem{BouChaZie23}
\by A.~Boutet de Monvel, M.~Charif, L.~Zielinski
\paper Behavior of large eigenvalues for the two-photon asymmetric quantum Rabi model
\jour Алгебра и анализ
\yr 2023
\vol 35
\issue 1
\pages 80--108
\mathnet{http://mi.mathnet.ru/aa1846}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4281622}
\transl
\jour St. Petersburg Math. J.
\yr 2024
\vol 35
\issue 1
\pages 61--82
\crossref{https://doi.org/10.1090/spmj/1793}