|
Алгебра и анализ, 2022, том 34, выпуск 6, страницы 135–169
(Mi aa1838)
|
|
|
|
Эта публикация цитируется в 2 научных статьях (всего в 2 статьях)
Статьи
Triangulated categories of framed bispectra and framed motives
G. Garkushaa, I. Paninb a Department of Mathematics, Swansea University, Fabian Way, Swansea SA1 8EN, UK
b St. Petersburg Branch of V. A. Steklov Mathematical Institute, Fontanka 27, 191023, St. Petersburg, Russia
Аннотация:
An alternative approach to classical Morel–Voevodsky stable motivic homotopy
theory $SH(k)$ is suggested. The triangulated category of framed bispectra $SH_{\mathrm{nis}}^{\mathrm{fr}}(k)$ and effective
framed bispectra $SH_{\mathrm{nis}}^{\mathrm{fr},\mathrm{eff}}(k)$ are introduced in the paper. Both triangulated categories
only involve Nisnevich local equivalences and have nothing to do with any kind of motivic equivalences.
It is shown that $SH_{\mathrm{nis}}^{\mathrm{fr}}(k)$ and $SH_{\mathrm{nis}}^{\mathrm{fr},\mathrm{eff}}(k)$ recover classical Morel–Voevodsky triangulated categories of bispectra $SH(k)$ and effective bispectra $SH^{\mathrm{eff}}(k)$ respectively.
Also, $SH(k)$ and $SH^{\mathrm{eff}}(k)$ are recovered as the triangulated category of framed motivic spectral
functors $SH_{S^1}^{\mathrm{fr}}[\mathcal{F}r_0(k)]$ and the triangulated category of framed motives
$\mathcal{SH}^{\mathrm{fr}}(k)$ constructed in the paper.
Ключевые слова:
motivic homotopy theory, framed motives, triangulated categories.
Поступила в редакцию: 10.07.2022
Образец цитирования:
G. Garkusha, I. Panin, “Triangulated categories of framed bispectra and framed motives”, Алгебра и анализ, 34:6 (2022), 135–169; St. Petersburg Math. J., 34:6 (2023), 991–1017
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/aa1838 https://www.mathnet.ru/rus/aa/v34/i6/p135
|
Статистика просмотров: |
Страница аннотации: | 147 | PDF полного текста: | 4 | Список литературы: | 28 | Первая страница: | 21 |
|