|
Статьи
On extra zeros of $p$-adic Rankin–Selberg $L$-functions
D. Benoisa, S. Horteb a Institut de Mathématiques Université de Bordeaux 351, cours de la Libération, 33405 Talence, France
b 28, rue des Platanes 92500 Rueil-Malmaison, France
Аннотация:
A version of the extra-zero conjecture, formulated by the first named author, is proved for $p$-adic $L$-functions associated with Rankin–Selberg convolutions of modular forms of the same weight. This result provides an evidence in support of this conjecture in the
noncritical case, which remained essentially unstudied.
Ключевые слова:
$p$-adic $L$-functions, modular forms, $p$-adic representations.
Поступила в редакцию: 14.08.2021
Образец цитирования:
D. Benois, S. Horte, “On extra zeros of $p$-adic Rankin–Selberg $L$-functions”, Алгебра и анализ, 34:6 (2022), 55–134; St. Petersburg Math. J., 34:6 (2023), 929–989
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/aa1837 https://www.mathnet.ru/rus/aa/v34/i6/p55
|
Статистика просмотров: |
Страница аннотации: | 106 | Список литературы: | 26 | Первая страница: | 22 |
|