Аннотация:
The class of nonautonomous functionals under study is characterized by the fact that the energy density changes its ellipticity and growth properties according to the point; some regularity results are proved for related minimisers. These results are the borderline counterpart of analogous ones previously derived for nonautonomous functionals with (p,q)-growth. Also, similar functionals related to Musielak–Orlicz spaces are discussed, in which basic properties like the density of smooth functions, the boundedness of maximal and integral operators, and the validity of Sobolev type inequalities are related naturally to the assumptions needed to prove the regularity of minima.
Образец цитирования:
P. Baroni, M. Colombo, G. Mingione, “Nonautonomous functionals, borderline cases and related function classes”, Алгебра и анализ, 27:3 (2015), 6–50; St. Petersburg Math. J., 27:3 (2016), 347–379
\RBibitem{BarColMin15}
\by P.~Baroni, M.~Colombo, G.~Mingione
\paper Nonautonomous functionals, borderline cases and related function classes
\jour Алгебра и анализ
\yr 2015
\vol 27
\issue 3
\pages 6--50
\mathnet{http://mi.mathnet.ru/aa1433}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3570955}
\elib{https://elibrary.ru/item.asp?id=24849886}
\transl
\jour St. Petersburg Math. J.
\yr 2016
\vol 27
\issue 3
\pages 347--379
\crossref{https://doi.org/10.1090/spmj/1392}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000373930300002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84963625766}
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/aa1433
https://www.mathnet.ru/rus/aa/v27/i3/p6
Эта публикация цитируется в следующих 235 статьяx:
Nour Eddine Alaa, Mostafa Bendahmane, Abderrahim Charkaoui, “Well-posedness results to parabolic problems involving (p(x),q(x))-growth structure with L1-data”, Journal of Mathematical Analysis and Applications, 543:2 (2025), 128934
Ge Dong, Xiaochun Fang, “Existence and L∞-Estimates of the Solutions to a Class of Inclusion Problems”, Bull. Malays. Math. Sci. Soc., 48:1 (2025)
Takao Ohno, Tetsu Shimomura, “Boundedness of maximal operators and Sobolev inequalities on Musielak-Orlicz spaces over unbounded metric measure spaces”, Bulletin des Sciences Mathématiques, 199 (2025), 103546
Minh-Phuong Tran, Thanh-Nhan Nguyen, “Existence of weak solutions to borderline double-phase problems with logarithmic convection terms”, Journal of Mathematical Analysis and Applications, 546:1 (2025), 129185
Ahmed El Ouardani, Ahmed Aberqi, Omar Benslimane, Mhamed El Massoudi, “Investigation into double-phase elliptic problems with boundary conditions, incorporating a logarithmic convection term”, J. Pseudo-Differ. Oper. Appl., 16:1 (2025)
Haiyan Zhou, Xiaoqian Song, Songbai Wang, Jiang Zhou, “Hardy–Littlewood maximal operators and generalized Orlicz spaces on measure spaces”, Ann. Funct. Anal., 16:1 (2025)
Ángel Crespo-Blanco, Patrick Winkert, “Nehari manifold approach for superlinear double phase problems with variable exponents”, Annali di Matematica, 203:2 (2024), 605
Yongjian Liu, Yasi Lu, Calogero Vetro, “A new kind of double phase elliptic inclusions with logarithmic perturbation terms I: Existence and extremality results”, Communications in Nonlinear Science and Numerical Simulation, 129 (2024), 107683
Hoang Hai Ha, Ky Ho, “Multiplicity results for double phase problems involving a new type of critical growth”, Journal of Mathematical Analysis and Applications, 530:1 (2024), 127659
Igor Skrypnik, Yevgeniia Yevgenieva, “Harnack inequality for solutions of the p(x)-Laplace equation under the precise non-logarithmic Zhikov's conditions”, Calc. Var., 63:1 (2024)
Nikolaos S. Papageorgiou, Francesca Vetro, Patrick Winkert, “Sequences of nodal solutions for critical double phase problems with variable exponents”, Z. Angew. Math. Phys., 75:3 (2024)
D. E. Apushkinskaya, A. A. Arkhipova, A. I. Nazarov, V. G. Osmolovskii, N. N. Uraltseva, “A Survey of Results of St. Petersburg State University Research School on Nonlinear Partial Differential Equations. I”, Vestnik St.Petersb. Univ.Math., 57:1 (2024), 1
Atsushi Tachikawa, “Partial regularity of minimizers for double phase functionals with variable exponents”, Nonlinear Differ. Equ. Appl., 31:2 (2024)
Mariia Savchenko, Igor Skrypnik, Yevgeniia Yevgenieva, “On the weak Harnack inequality for unbounded non-negative super-solutions of degenerate double-phase parabolic equations”, Journal of Mathematical Analysis and Applications, 537:2 (2024), 128331
Calogero Vetro, Shengda Zeng, “Regularity and Dirichlet Problem for Double-Phase Energy Functionals of Different Power Growth”, J Geom Anal, 34:4 (2024)
Minh-Phuong Tran, Thanh-Nhan Nguyen, Le-Tuyet-Nhi Pham, “Gradient bounds for non-uniformly quasilinear elliptic two-sided obstacle problems with variable exponents”, Journal of Mathematical Analysis and Applications, 531:1 (2024), 127776
Anna Kh. Balci, Mikhail Surnachev, “The Lavrentiev phenomenon in calculus of variations with differential forms”, Calc. Var., 63:3 (2024)
Maria Alessandra Ragusa, Atsushi Tachikawa, “Regularity of minimizers for double phase functionals of borderline case with variable exponents”, Advances in Nonlinear Analysis, 13:1 (2024)
Wulong Liu, Guowei Dai, Patrick Winkert, Shengda Zeng, “Multiple Positive Solutions for Quasilinear Elliptic Problems in Expanding Domains”, Appl Math Optim, 90:1 (2024)
Ky Ho, Yun-Ho Kim, Chao Zhang, “Double phase anisotropic variational problems involving critical growth”, Advances in Nonlinear Analysis, 13:1 (2024)