-
Kh. Kefi, V. D. Radulescu, “On a $p(x)$-biharmonic problem with singular weights”, Z. Angew. Math. Phys., 68:4 (2017), 80
-
Dachun Yang, Wen Yuan, Ciqiang Zhuo, Springer Proceedings in Mathematics & Statistics, 206, Function Spaces and Inequalities, 2017, 299
-
N. Chorfi, V. D. Radulescu, “Continuous spectrum for some classes of $(p, 2)$-equations with linear or sublinear growth”, Miskolc Math. Notes, 17:2 (2016), 817–826
-
J. Ok, “Partial continuity for a class of elliptic systems with non-standard growth”, Electron. J. Differ. Equ., 2016, 323
-
P. Harjulehto, P. Hasto, R. Klen, “Generalized Orlicz spaces and related PDE”, Nonlinear Anal.-Theory Methods Appl., 143 (2016), 155–173
-
J. Ok, “Regularity results for a class of obstacle problems with nonstandard growth”, J. Math. Anal. Appl., 444:2 (2016), 957–979
-
F. Colasuonno, M. Squassina, “Eigenvalues for double phase variational integrals”, Ann. Mat. Pura Appl., 195:6 (2016), 1917–1959
-
M. Eleuteri, P. Marcellini, E. Mascolo, “Lipschitz estimates for systems with ellipticity conditions at infinity”, Ann. Mat. Pura Appl., 195:5 (2016), 1575–1603
-
J. Ok, “Calderón–Zygmund estimates for a class of obstacle problems with nonstandard growth”, NoDea-Nonlinear Differ. Equ. Appl., 23:4 (2016), 50
-
P. A. Hasto, “The maximal operator on generalized Orlicz spaces”, J. Funct. Anal., 269:12 (2015), 4038–4048
-
F. Colasuonno, M. Squassina, “Stability of eigenvalues for variable exponent problems”, Nonlinear Anal.-Theory Methods Appl., 123-124 (2015), 56–67
-
P. Baroni, M. Colombo, G. Mingione, “Harnack inequalities for double phase functionals”, Nonlinear Anal.-Theory Methods Appl., 121 (2015), 206–222
-
F. Leonetti, P. V. Petricca, “Regularity for minimizers of integrals with nonstandard growth”, Nonlinear Anal.-Theory Methods Appl., 129 (2015), 258–264
-
F. Leonetti, P. V. Petricca, “Global summability for solutions to some anisotropic elliptic systems”, Adv. Differ. Equat., 20:11-12 (2015), 1165–1186
-
M. Colombo, G. Mingione, “Bounded minimisers of double phase variational integrals”, Arch. Ration. Mech. Anal., 218:1 (2015), 219–273