30 citations to https://www.mathnet.ru/rus/tvp2821
-
Ileana Iribarren, José R. León, “Central limit theorem for solutions of random initialized differential equations: a simple proof”, International Journal of Stochastic Analysis, 2006:1 (2006)
-
J.M. Medina, B. Frias, “A Synthesis of a<tex>$1/f$</tex>Process Via Sobolev Spaces and Fractional Integration”, IEEE Trans. Inform. Theory, 51:12 (2005), 4278
-
O. E. Barndorff-Nielsen, N. N. Leonenko, “Burgers' turbulence problem with linear or quadratic external potential”, Journal of Applied Probability, 42:2 (2005), 550
-
Fernanda Cipriano, Stochastic Analysis and Mathematical Physics II, 2003, 29
-
M.D. Ruiz-Medina, J.M. Angulo, V.V. Anh, “Scaling limit solution of a fractional Burgers equation”, Stochastic Processes and their Applications, 93:2 (2001), 285
-
Ю. Ю. Бахтин, “Функциональная центральная предельная теорема для преобразованных решений многомерного уравнения Бюргерса со случайными начальными данными”, Теория вероятн. и ее примен., 46:3 (2001), 427–448 ; Yu. Yu. Bakhtin, “A Functional Central Limit Theorem for Transformed Solutions of the Multidimensional Burgers Equation with Random Initial Data”, Theory Probab. Appl., 46:3 (2002), 387–405
-
Bakhtin Y.Y., “A functional central limit theorem for transformed solutions to the multidimensional Burgers equation with random initial data”, Doklady Mathematics, 61:3 (2000), 417–419
-
V.V. Anh, N.N. Leonenko, “Scaling laws for fractional diffusion-wave equations with singular data”, Statistics & Probability Letters, 48:3 (2000), 239
-
A. Dermoune, S. Hamadène, Y. Ouknine, “Limit theorem for the statistical solution of Burgers equation”, Stochastic Processes and their Applications, 81:2 (1999), 217
-
Nikolai N. Leonenko, Wojbor A. Woyczynski, “Parameter identification for singular random fields arising in Burgers' turbulence”, Journal of Statistical Planning and Inference, 80:1-2 (1999), 1