30 citations to https://www.mathnet.ru/rus/tvp2821
-
В. П. Демичев, “Центральная предельная теорема для интегралов по случайным мерам”, Матем. заметки, 95:2 (2014), 209–221 ; V. P. Demichev, “A Central Limit Theorem for Integrals with Respect to Random Measures”, Math. Notes, 95:2 (2014), 193–203
-
В. П. Демичев, “Функциональная предельная теорема для решений уравнения Бюргерса со случайными начальными данными”, Вестн. Моск. ун-та. Сер. 1. Матем., мех., 2013, № 2, 42–46 ; V. P. Demichev, “Functional limit theorem for solutions to Burgers equation with random initial data”, Moscow University Mathematics Bulletin, 68:2 (2013), 107–110
-
V. V. Anh, N. N. Leonenko, M. D. Ruiz-Medina, “Macroscaling Limit Theorems for Filtered Spatiotemporal Random Fields”, Stochastic Analysis and Applications, 31:3 (2013), 460
-
S. Dhawan, S. Kapoor, S. Kumar, S. Rawat, “Contemporary review of techniques for the solution of nonlinear Burgers equation”, Journal of Computational Science, 3:5 (2012), 405
-
Nikolai N. Leonenko, M. Dolores Ruiz-Medina, Lecture Notes in Statistics, 207, Advances and Challenges in Space-time Modelling of Natural Events, 2012, 165
-
Andrii B. Ilienko, Josef G. Steinebach, “Stochastically Lipschitzian functions and limit theorems for functionals of shot noise processes”, Theory Stoch. Process., 17(33):2 (2011), 25–34
-
N. N. Leonenko, M. D. Ruiz-Medina, “Spatial Scalings for Randomly Initialized Heat and Burgers Equations with Quadratic Potentials”, Stochastic Analysis and Applications, 28:2 (2010), 303
-
N. N. Leonenko, M. D. Ruiz-Medina, “Gaussian Scenario for the Heat Equation with Quadratic Potential and Weakly Dependent Data with Applications”, Methodol Comput Appl Probab, 10:4 (2008), 595
-
N. N. Leonenko, M. D. Ruiz-Medina, “Scaling Laws for the Multidimensional Burgers Equation with Quadratic External Potential”, J Stat Phys, 124:1 (2006), 191
-
V. V. Anh, N. N. Leonenko, L. M. Sakhno, “Spectral Properties of Burgers and KPZ Turbulence”, J Stat Phys, 122:5 (2006), 949