18 citations to https://www.mathnet.ru/rus/tm3450
-
Vasil'eva A.A., “Widths of Function Classes on Sets With Tree-Like Structure”, J. Approx. Theory, 192 (2015), 19–59
-
Vasil'eva A.A., “Widths of Weighted Sobolev Classes With Weights That Are Functions of the Distance To Some H-Set: Some Limit Cases”, Russ. J. Math. Phys., 22:1 (2015), 127–140
-
А. А. Васильева, “Поперечники весовых классов Соболева на области с пиком”, Матем. сб., 206:10 (2015), 37–70 ; A. A. Vasil'eva, “Widths of Sobolev weight classes on a domain with cusp”, Sb. Math., 206:10 (2015), 1375–1409
-
A. A. Vasil'eva, “Embedding theorem for weighted Sobolev classes with weights that are functions of the distance to some $h$-set”, Russ. J. Math. Phys., 21:1 (2014), 112–122
-
A. A. Vasil'eva, “Widths of weighted Sobolev classes on a John domain: strong singularity at a point”, Rev. Mat. Complut., 27:1 (2014), 167–212
-
A. A. Vasil'eva, “Embeddings of weighted Sobolev classes on a John domain”, Eurasian Math. J., 5:3 (2014), 129–134
-
О. В. Бесов, “О колмогоровских поперечниках классов Соболева на нерегулярной области”, Ортогональные ряды, теория приближений и смежные вопросы, Сборник статей. К 60-летию со дня рождения академика Бориса Сергеевича Кашина, Труды МИАН, 280, МАИК «Наука/Интерпериодика», М., 2013, 41–52 ; O. V. Besov, “Kolmogorov widths of Sobolev classes on an irregular domain”, Proc. Steklov Inst. Math., 280 (2013), 34–45
-
A. A. Vasil'eva, “Embedding theorem for weighted Sobolev classes on a John domain with weights that are functions of the distance to some $h$-set”, Russ. J. Math. Phys., 20:3 (2013), 360–373