18 citations to https://www.mathnet.ru/rus/tm3450
-
А. А. Васильева, “Колмогоровские поперечники пересечения конечного семейства классов Соболева”, Изв. РАН. Сер. матем., 88:1 (2024), 21–46 ; A. A. Vasil'eva, “Kolmogorov widths of an intersection of a finite family of Sobolev classes”, Izv. Math., 88:1 (2024), 18–42
-
A. A. Vasil'eva, “Bounds for the Kolmogorov Widths of the Sobolev Weighted Classes with Conditions on the Zero and Highest Derivatives”, Russ. J. Math. Phys., 29:2 (2022), 249
-
Vasil'eva A.A., “Kolmogorov Widths of Weighted Sobolev Classes on a Multi-Dimensional Domain With Conditions on the Derivatives of Order R and Zero”, J. Approx. Theory, 269 (2021), 105602
-
F. Lopez-Garcia, “Weighted Korn inequalities on John domains”, Studia Math., 241:1 (2018), 17–39
-
A. A. Vasil'eva, “Entropy numbers of embeddings of function spaces on sets with tree-like structure: some generalized limiting cases”, Russ. J. Math. Phys., 25:2 (2018), 248–270
-
F. Lopez-Garcia, “Weighted generalized Korn inequalities on John domains”, Math. Meth. Appl. Sci., 41:17, SI (2018), 8003–8018
-
А. А. Васильева, “Энтропийные числа операторов вложения функциональных пространств на множествах с древоподобной структурой”, Изв. РАН. Сер. матем., 81:6 (2017), 38–85 ; A. A. Vasil'eva, “Entropy numbers of embedding operators of function spaces on sets with tree-like structure”, Izv. Math., 81:6 (2017), 1095–1142
-
Vasil'eva A.A., “Estimates for the entropy numbers of embedding operators of function spaces on sets with tree-like structure: Some limiting cases”, J. Complex., 36 (2016), 74–105
-
Vasil'eva A.A., “Embedding theorems for a weighted Sobolev class in the space $L_{q,v}$ with weights having a singularity at a point: Case $v\notin L_q^1$”, Russ. J. Math. Phys., 23:3 (2016), 392–424
-
А. А. Васильева, “Достаточные условия вложения весового класса Соболева на области с условием Джона”, Сиб. матем. журн., 56:1 (2015), 65–81 ; A. A. Vasil'eva, “Some sufficient conditions for embedding a weighted Sobolev class on a John domain”, Siberian Math. J., 56:1 (2015), 54–67