47 citations to https://www.mathnet.ru/rus/sm4529
  1. В. В. Фокичева, “Топологическая классификация биллиардов в локально плоских областях, ограниченных дугами софокусных квадрик”, Матем. сб., 206:10 (2015), 127–176  mathnet  crossref  mathscinet  zmath  adsnasa  elib; V. V. Fokicheva, “A topological classification of billiards in locally planar domains bounded by arcs of confocal quadrics”, Sb. Math., 206:10 (2015), 1463–1507  crossref  isi
  2. Martynchuk N.N., “Semi-Local Liouville Equivalence of Complex Hamiltonian Systems Defined By Rational Hamiltonian”, Topology Appl., 191 (2015), 119–130  crossref  mathscinet  zmath  isi  elib  scopus
  3. Fomenko A.T., Kantonistova E.O., “Topological Classification of Geodesic Flows on Revolution 2-Surfaces with Potential”, Continuous and Distributed Systems II, Studies in Systems, Decision and Control, 30, eds. Sadovnichiy V., Zgurovsky M., Springer Int Publishing Ag, 2015, 11–27  crossref  mathscinet  zmath  isi  scopus
  4. Н. Н. Мартынчук, “О комплексных гамильтоновых системах в $\mathbb{C^2}$ с лорановским гамильтонианом малой степени”, Вестн. Моск. ун-та. Сер. 1. Матем., мех., 2015, № 2, 3–9  mathnet  mathscinet  elib; N. N. Martynchuk, “Complex Hamiltonian systems on $\mathbb{C^2}$ with Hamiltonian function of low Laurent degree”, Moscow University Mathematics Bulletin, 70:2 (2015), 53–59  crossref  isi
  5. В. А. Шмаров, “Минимальные линейные функции Морса на орбитах в алгебрах Ли”, Вестн. Моск. ун-та. Сер. 1. Матем., мех., 2015, № 2, 9–16  mathnet  mathscinet; V. A. Shmarov, “Minimal linear Morse functions on the orbits in Lie algebras”, Moscow University Mathematics Bulletin, 70:2 (2015), 60–67  crossref  isi
  6. И. Н. Шнурников, “Реализуемость особых уровней функций Морса объединением геодезических”, Вестн. Моск. ун-та. Сер. 1. Матем., мех., 2015, № 6, 45–48  mathnet  mathscinet; I. N. Shnurnikov, “Realizability of singular levels of Morse functions as unions of geodesies”, Moscow University Mathematics Bulletin, 70:6 (2015), 270–273  crossref  isi
  7. Н. С. Славина, “Топологическая классификация систем типа Ковалевской–Яхьи”, Матем. сб., 205:1 (2014), 105–160  mathnet  crossref  mathscinet  zmath  adsnasa  elib; N. S. Slavina, “Topological classification of systems of Kovalevskaya-Yehia type”, Sb. Math., 205:1 (2014), 101–155  crossref  isi
  8. С. С. Николаенко, “Топологическая классификация систем Чаплыгина в динамике твердого тела в жидкости”, Матем. сб., 205:2 (2014), 75–122  mathnet  crossref  mathscinet  zmath  adsnasa  elib; S. S. Nikolaenko, “A topological classification of the Chaplygin systems in the dynamics of a rigid body in a fluid”, Sb. Math., 205:2 (2014), 224–268  crossref  isi
  9. И. К. Козлов, “Топология слоения Лиувилля для интегрируемого случая Ковалевской на алгебре Ли $\mathrm{so}(4)$”, Матем. сб., 205:4 (2014), 79–120  mathnet  crossref  mathscinet  zmath  adsnasa  elib; I. K. Kozlov, “The topology of the Liouville foliation for the Kovalevskaya integrable case on the Lie algebra so(4)”, Sb. Math., 205:4 (2014), 532–572  crossref  isi
  10. В. В. Фокичева, “Классификация биллиардных движений в областях, ограниченных софокусными параболами”, Матем. сб., 205:8 (2014), 139–160  mathnet  crossref  mathscinet  zmath  adsnasa  elib; V. V. Fokicheva, “Classification of billiard motions in domains bounded by confocal parabolas”, Sb. Math., 205:8 (2014), 1201–1221  crossref  isi
Предыдущая
1
2
3
4
5
Следующая