47 citations to https://www.mathnet.ru/rus/sm4529
  1. Д. С. Тимонина, “Лиувиллева классификация интегрируемых геодезических потоков на торе вращения в потенциальном поле”, Вестн. Моск. ун-та. Сер. 1. Матем., мех., 2017, № 3, 35–43  mathnet  mathscinet  elib; D. S. Timonina, “Liouville classification of integrable geodesic flows on a torus of revolution in a potential field”, Moscow University Mathematics Bulletin, 72:3 (2017), 121–128  crossref  isi
  2. Timonina D.S., “Topological Classification of Integrable Geodesic Flows in a Potential Field on the Torus of Revolution”, Lobachevskii J. Math., 38:6 (2017), 1108–1120  crossref  mathscinet  zmath  isi  scopus
  3. А. И. Жила, “Сравнение системы “шар Чаплыгина с ротором” и системы Жуковского с точки зрения грубой лиувиллевой эквивалентности”, Вестн. Моск. ун-та. Сер. 1. Матем., мех., 2017, № 6, 28–33  mathnet  mathscinet; A. I. Zhila, “Comparison of the system “Chaplygin ball with a rotor” and the Zhukovskii system from the rough Liouville equivalence point of view”, Moscow University Mathematics Bulletin, 72:6 (2017), 245–250  crossref  isi
  4. Е. О. Кантонистова, “Топологическая классификация интегрируемых гамильтоновых систем на поверхностях вращения в потенциальном поле”, Матем. сб., 207:3 (2016), 47–92  mathnet  crossref  mathscinet  zmath  adsnasa  elib; E. O. Kantonistova, “Topological classification of integrable Hamiltonian systems in a potential field on surfaces of revolution”, Sb. Math., 207:3 (2016), 358–399  crossref  isi
  5. Д. А. Пермяков, “Регулярная гомотопность погружений графов в поверхности”, Матем. сб., 207:6 (2016), 93–112  mathnet  crossref  mathscinet  zmath  adsnasa  elib; D. A. Permyakov, “Regular homotopy for immersions of graphs into surfaces”, Sb. Math., 207:6 (2016), 854–872  crossref  isi
  6. И. М. Никонов, “Высотные атомы с транзитивной на вершинах группой симметрий”, Вестн. Моск. ун-та. Сер. 1. Матем., мех., 2016, № 6, 17–25  mathnet  mathscinet; I. M. Nikonov, “Height atoms whose symmetry groups act transitively on their vertex sets”, Moscow University Mathematics Bulletin, 71:6 (2016), 233–241  crossref  isi
  7. М. А. Тужилин, “Особенности интегрируемых гамильтоновых систем с одинаковым слоением на границе. Бесконечная серия”, Вестн. Моск. ун-та. Сер. 1. Матем., мех., 2016, № 5, 14–20  mathnet  mathscinet; M. A. Tuzhilin, “Singularities of integrable Hamiltonian systems with the same boundary foliation. An infinite series”, Moscow University Mathematics Bulletin, 71:5 (2016), 185–190  crossref  isi
  8. В. А. Кибкало, “Топология аналога случая интегрируемости Ковалевской на алгебре Ли $\mathrm{so}(4)$ при нулевой постоянной площадей”, Вестн. Моск. ун-та. Сер. 1. Матем., мех., 2016, № 3, 46–50  mathnet  mathscinet; V. A. Kibkalo, “The topology of the analog of Kovalevskaya integrability case on the Lie algebra $\mathrm{so}(4)$ under zero area integral”, Moscow University Mathematics Bulletin, 71:3 (2016), 119–123  crossref  isi
  9. А. И. Жила, “Шар Чаплыгина с ротором: невырожденность особых точек”, Вестн. Моск. ун-та. Сер. 1. Матем., мех., 2016, № 2, 3–12  mathnet  mathscinet  elib; A. I. Zhila, “Chaplygin's ball with a rotor: Non-degeneracy of singular points”, Moscow University Mathematics Bulletin, 71:2 (2016), 45–54  crossref  isi
  10. Д. А. Федосеев, А. Т. Фоменко, “Некомпактные особенности интегрируемых динамических систем”, Фундамент. и прикл. матем., 21:6 (2016), 217–243  mathnet; D. A. Fedoseev, A. T. Fomenko, “Noncompact bifurcations of integrable dynamic systems”, J. Math. Sci., 248:6 (2020), 810–827  crossref
Предыдущая
1
2
3
4
5
Следующая