71 citations to https://www.mathnet.ru/rus/sm3573
  1. R. Michael Range, “From Cauchy, via Martinelli–Bochner and Leray, to the Henkin–Ramirez kernel”, Bol. Soc. Mat. Mex., 29:S1 (2023)  crossref
  2. Timothy G. Clos, “Solvability of the Gleason Problem on a Class of Bounded Pseudoconvex Domains”, Complex Anal. Oper. Theory, 16:4 (2022)  crossref
  3. L. K. Ha, T. K. An, “$\boldsymbol{L}^{\boldsymbol{p}}$ and Hölder Estimates for Cauchy–Riemann Equations on Convex Domain of Finite/Infinite Type with Piecewise Smooth Boundary in $\boldsymbol{\mathbb{C}}^{\mathbf{2}}$”, J. Contemp. Mathemat. Anal., 56:4 (2021), 225  crossref
  4. Ly Kim Ha, “$C^k$-Estimates for $\bar{\partial }$-Equation on Certain Convex Domains of Infinite Type in $\mathbb {C}^n$”, J Geom Anal, 31:2 (2021), 2058  crossref
  5. F. Forstnerič, “Mergelyan's and Arakelian's theorems for manifold-valued maps”, Mosc. Math. J., 19:3 (2019), 465–484  mathnet  crossref
  6. Ly Kim Ha, “Hölder and $L^p$ Estimates for the ${\bar{\partial }}$-equation in a class of convex domains of infinite type in ${\mathbb {C}}^n$”, Monatsh Math, 190:3 (2019), 517  crossref
  7. Shaban Khidr, “Holomorphic Approximation on Certain Weakly Pseudoconvex Domains in Cn”, Mathematics, 7:11 (2019), 1035  crossref
  8. Steven G. Krantz, “Canonical kernels versus constructible kernels”, Rocky Mountain J. Math., 49:6 (2019)  crossref
  9. Ly Kim Ha, “On Hölder Estimates with Loss of Order One for the

    ̄
    $\bar {\partial }$ Equation on a Class of Convex Domains of Infinite Type in

    3
    $\mathbb {C}^{3}$”, Acta Math Vietnam, 44:2 (2019), 519  crossref
  10. LY KIM HA, “-APPROXIMATION OF HOLOMORPHIC FUNCTIONS ON A CLASS OF CONVEX DOMAINS”, Bull. Aust. Math. Soc., 97:3 (2018), 446  crossref
1
2
3
4
5
6
7
8
Следующая