86 citations to https://www.mathnet.ru/rus/sm1856
  1. Samuel L. Krushkal, Handbook of Complex Analysis, 2, Geometric Function Theory, 2005, 31  crossref
  2. В. В. Чуешев, “Точная вариационная формула для группы монодромии на компактной римановой поверхности”, Матем. тр., 7:2 (2004), 126–158  mathnet  mathscinet  zmath  elib; V. V. Chueshev, “An Explicit Variational Formula for the Monodromy Group”, Siberian Adv. Math., 15:2 (2005), 1–32
  3. Leszek Hadasz, Zbigniew Jaskólski, “Classical Liouville action on the sphere with three hyperbolic singularities”, Nuclear Physics B, 694:3 (2004), 493  crossref  mathscinet  zmath
  4. J. TESCHNER, “ON THE RELATION BETWEEN QUANTUM Liouville THEORY AND THE QUANTIZED Teichmüller SPACES”, Int. J. Mod. Phys. A, 19:supp02 (2004), 459  crossref  mathscinet  zmath
  5. Aldrovandi E., “On Hermitian-Holomorphic Classes Related to Uniformization, the Dilogarithm, and the Liouville Action”, Commun. Math. Phys., 251:1 (2004), 27–64  crossref  mathscinet  zmath  adsnasa  isi
  6. Kirill Krasnov, “Black-hole thermodynamics and Riemann surfaces”, Class Quantum Grav, 20:11 (2003), 2235  crossref  mathscinet  zmath  adsnasa  elib
  7. Kirill Krasnov, “On holomorphic factorization in asymptotically AdS 3D gravity”, Class Quantum Grav, 20:18 (2003), 4015  crossref  mathscinet  zmath  adsnasa  elib
  8. Korotkin D., “Matrix Riemann–Hilbert Problems Related to Branched Coverings of Cp”, Factorization and Integrable Systems, Operator Theory : Advances and Applications, 141, eds. Gohberg I., Manojlovic N., DosSantos A., Birkhauser Verlag Ag, 2003, 103–129  mathscinet  zmath  isi
  9. J. Teschner, “Quantum Liouville theory versus quantized Teichmüller spaces”, Fortschritte der Physik, 51:7-8 (2003), 865  crossref
  10. Kirill Krasnov, “Analytic continuation for asymptotically AdS 3D gravity”, Class Quantum Grav, 19:9 (2002), 2399  crossref  mathscinet  zmath  adsnasa  elib
Предыдущая
1
2
3
4
5
6
7
8
9
Следующая